
RESTRICTED

Object Oriented Ltd. Steinen CH-6048 Horw Switzerland Tel. +41 (0)41 340 5640 Fax +41 (0)41 340 5641
www.object-oriented.com – info@object-oriented.com

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 1 of 35

D
 R

 A
 F

 T

The IDIOM approach to business rules
and the development process

Robert Love

Summary 2

Introduction 3

The way we build software 4
How could it be better? 5
A practical way forward 5
IDIOM's solution 6
Focus on business rules 6

The business model – the context for modelling business rules 7
The business model 7
'Business objects' – or fact model 8
Other elements of the business model 8
Business rules 10
Business decisions 11

Developing business rules – activities and artefacts 12
The 'typical' development process 12
Working on the business model 12
Where do business rules fit in? 13
Locating and recording the business decisions 13
The decision inventory 14
The steps for rules development 14
Rules discovery 15
Rules definition 17
Rules testing 22
Summary of the overall development process 24
Impact of introducing business rules 25

Rules development with IDIOM – some practical considerations 27
The IDIOM application architecture; location and types of rules 27
Designing decision requests 28
Developing rules as IDIOM formulas 30

Conclusion 31

Appendix – the Zachman framework 32
Reconciling Zachman with Morgan and IDIOM 33

References 35

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 2 of 35

D
 R

 A
 F

 T

Summary In a recent book, Business Rules and Information Systems, Tony Morgan attributes major
shortcomings in today's software development processes to an over-emphasis on
programming and a failure to recognise the importance of rigorous requirements
specification. In Morgan's opinion we should express requirements in the form of a richly
structured business model that supports two kinds of transformation: into natural
language understandable by the business owners, and, ultimately, into a machine
generated information system. While this second goal is not reachable today, beginning
immediately to adopt these techniques will enable us to realise substantial improvements
in the development process immediately as well as setting us on the right path for the
future.

Business rules are a case in point. They are a slice of the requirements which we can treat
in isolation to prove Morgan's agenda: that is, to create a complete and precise rules
model which business owners can certify as accurate and from which the rules component
of the system can be generated. This approach had not been realised at the time Morgan
described it in 2002. IDIOM has since realised it fully. The benefits include flexibility and
accuracy in the completed application, and reduced time and cost from the elimination of
programming steps.

IDIOM is an independently conceived product for developing business rules, whose
approach is strongly aligned with Morgan's. We describe how IDIOM is applied in the rules
development process described by Morgan, finding that it more than meets his
requirements for a tool effectively supporting rules development wholly under the control
of the business owners. We outline typical work-products and activities in business rules
development when IDIOM is used, and additionally relate these to the relevant sections of
the Zachman framework.

For best results when viewing this document with Adobe Acrobat, please
turn on the Smooth Line Art option in Edit → Preferences → General.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 3 of 35

D
 R

 A
 F

 T

Introduction
IDIOM is a tool and an approach for the development of business rules by
business people. To be successful, businesses need automated systems that
accurately and reliably implement the day-to-day decisions that embody their
business strategy and on which they depend for competitive advantage.
Business decisions are the focal points in the business process where the
business acts to realise its goals by applying its business rules. In the IDIOM
view, effective management of business rules is a crucial to building automated
systems with the characteristics essential for business success: in particular,
systems that accurately meet business requirements and adapt quickly and
flexibly to changing business conditions and opportunities. Business people, not
software developers, are the people who make business rules and understand
them best. A fundamental principle of the IDIOM approach is that successful
systems are built by providing business people with the means to develop and
manage the business rules throughout the development process, and also
during the subsequent life of the system.

Similar ideas were developed independently by Tony Morgan in his recent book,
Business Rules and Information Systems: Aligning IT with Business Goals1. As
Mr Morgan's two-part title suggests, he too sees focus on business rules as an
essential ingredient of information systems that serve the business more
effectively. The remainder of this paper is an appreciation of Mr Morgan's book,
with a discussion of the substantial points in which the Morgan and IDIOM
approaches coincide, and a demonstration of the ways in which IDIOM meets or
exceeds Mr Morgan's specifications for a business rules tool of the future.

This paper is intended for anyone interested in software development processes
and the growing emphasis in the IT world on business rules. Readers are
assumed to be familiar with software development processes: for example, with
the activities such as analysis, design and implementation through which an
automated system is built, and the typical products of these activities. Prior
acquaintance with IDIOM is an advantage but not essential: IDIOM
familiarisation materials are readily available from www.idiomsoftware.com.

1 [Morgan 2002]. References are listed at the end of the paper.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 4 of 35

D
 R

 A
 F

 T

The way we build software
No technical book is any the worse for getting our attention with some initial
polemics, and Tony Morgan begins by remarking that many people in the IT
world today, along with many outside it, have the perception that organisations'
attempts to build information systems are often, and sometimes spectacularly,
unsuccessful. He observes that "the levels of performance accepted as normal in
IT would be considered utterly appalling by the standards of any other mature
industry"2. By conservative estimates, 10 percent of an average IT budget is
spent on projects that never deliver measurable benefits, and 25 percent on
correcting errors in previously delivered software. Worldwide, he estimates, this
amounts to $250 billion spent each year on "various kinds of failure".

Reflecting on this situation, he observes: "Our current development culture puts
a huge emphasis on programming, and the popular perception is that 90 percent
of building an information system depends on the cleverness of the
programmers. … The reality is different. Many research projects have shown
that the vast majority of software problems originate from specification error,
not from the code as such." In other words, multiple attempts over the years to
improve programming techniques have been misguided because the problem
lies elsewhere, in the way we treat requirements, or, more accurately, in a
flawed development process that loses sight of requirements.

In the conventionally accepted software development process, other worrying
features are apparent:

 The development process relies heavily on a series of steps in which
requirements are successively converted from one form to another by
analysts, designers, and developers. The business owners of the software are
kept remote from the process because the further the process goes, the
more likely it is that the generated artefacts are not in a form that business
people can readily understand.

 The multiple steps also introduce many opportunities for misunderstandings
and errors, and these are often not detected until late in the process. In fact,
"the process contains an implicit acceptance of frailty. It's taken for granted
that the code produced will contain errors" and that a significant amount of
effort will be expended on the inevitable cycle of fixing these plus further
errors introduced whenever the code is changed.

 There is inadequate separation of concerns. Different needs are tangled
together in code in a way that makes it impossible to reuse parts of either a
completed or incomplete system in a subsequent system. Business logic may
be polluted with irrelevant implementation constraints, for example, and
business rules are seldom separately identified as such and implemented in a
reusable form.

There are, in summary, two serious problems with the conventional
development process. First, it has a wrong focus. It has a preoccupation with
programming, which inevitably distorts requirements and as an end result
produces software in which there is no obvious link to the requirements, and the
correspondence between software and requirements is not open to examination
or verification. Secondly, it is also very labour-intensive: each step requires
manual labour from expensive specialists, with no significant help from
automation. The process is consequently slow. Some large projects are so slow
that the needs of the organisation change faster than the software can be
developed, and the projects are abandoned at huge cost.

2 Throughout this paper, all quotations in double quotation marks are from [Morgan 2002].

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 5 of 35

D
 R

 A
 F

 T

How could it
be better?

In Tony Morgan's view, the core problem in the way we build systems today is
that requirements are weakly structured and only tenuously linked with the
implementation. His vision of a better future – in which he is far from alone3 – is
one in which structured descriptions of the business requirements drive system
development. This is a vision in which humans define the system and machines
implement it.

"If we have a complete definition of the functionality required and a complete
description of the processing environment, the creation of the software to do a
specific job in a specific environment can be reduced to a mindless automated
process."

Such an approach is based on a complete and structured description of the
business and its requirements. 'Structured' means that it is organised and
expressed using techniques which make it logically consistent and allow
machines to analyse it. Once such a description is available, two steps follow.

 First a human-readable view of the structured description is generated, which
the business owners verify and correct. This view acts as a kind of contract
between the business people and the developers.

 Then the equivalent machine-readable view of the same description is
generated. This is sent as input, together with a suitably complete definition
of the technology that's to be used, to the system generator, which produces
specific software components that together realise an appropriate information
system. This is a very far from simple step, but it is in principle possible –
"no technology barrier stands in the way".

The crucial idea here is that the humans defining the system and the machine
implementing it are sharing the same description of the business requirements,
each using it in the way that best suits them. This makes it impossible for the
generated system to diverge from the requirements.

A practical
way forward

The goal of machine-generated systems is still a long way from realisation, but
it leads us in a critical direction and we can immediately derive significant
benefits from beginning to approach it incrementally.

First, we need to recognise the central importance of Morgan's approach for
structured requirements. Regardless of the extent to which we can realise
automated development, it is of immediate benefit to be able to describe the
needs of the business in a complete, accurate, and richly structured form that
allows the business needs to be expressed or converted into a form that the
business owner can easily understand, and is capable of being checked for
coverage and consistency and navigated by automation tools. Even if the
software is developed manually, this approach is a valuable goal in itself, and
"will allow us to eliminate a large proportion of the problems that plague current
software development".

Secondly, we need to seek ways to allow our enhanced business description to
drive the development process, because this is the way to maximise accuracy
and traceability. This implies principally an emphasis on code generation. The
tools of the future will refine and extend techniques in which our enhanced
business description is converted into generated system components. Mr Morgan
predicted in 2002 that tools that do this would soon be available. IDIOM is one
of them.

3 Many writers have proposed software utopias; a recent example with a focus on business rules is found in [Bevington 2004]

and its precursor [Bevington 2004].

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 6 of 35

D
 R

 A
 F

 T

IDIOM's
solution

Business rules are one part of the business requirements. Looking at the role of
business rules in today's development process, IDIOM's designers
simultaneously perceived the same weaknesses in the business rules microcosm
that Tony Morgan detected globally. They noticed, for example, that even more
so that other types of requirements, business rules are not effectively separated
and managed in the conventional development process: they are inextricably
embedded in the developed code in a way that prevents them from being
verified by business users or shared with other systems. Business rules also
(along with other requirements) pass through multiple steps in the development
cycle, being converted into a new form at each step. No step yields an output
which the provider of the input can verify, and the process is error-prone, slow,
and expensive.

The IDIOM designers' response to these concerns was a tool for business rules
development that happens to exactly coincide Tony Morgan's requirements:

 Business rules are captured – by a business expert or a business analyst
using IDIOM – in a simple and intuitively clear graphical formula language.
This is a complete and rigorous structured specification of the rules.

 IDIOM converts this structured specification into near-natural language for
verification by business people.

 When the rules are fully verified and tested, IDIOM also converts the
structured specification into a generated system component. Incorporated in
the built system, this component encapsulates the rules and is used by other
components to gain access to them.

 This entire process encapsulates the rules in a form that makes them easily
maintainable and verifiable by their business owners, and easily distributed
to and reused by multiple applications.

Focus on
business
rules

Having identified a general problem and outlined a general approach to tackle it,
Tony Morgan focuses in the rest of his book on business rules in particular. This
is appropriate because business rules have to date been a neglected part of
requirements specifications. As a consequence, they define a field where system
builders are in need of practical advice and effective tools, and where
improvements in the development process have the greatest potential to deliver
substantial benefits. These are, of course, exactly the reasons that IDIOM was
developed. In the rest of this paper we look in more detail at Mr Morgan's
recommendations and techniques, focussing on those parts where IDIOM
realises and extends his approach.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 7 of 35

D
 R

 A
 F

 T

The business model – the context for modelling business rules
In this section we briefly survey the business model described by Tony Morgan.
Business modelling is the bigger picture which we need to properly understand
the role of business rules.

The business
model

The richly structured requirements specification envisaged in the previous
section is, technically, a business model. Morgan describes a business model as
a "multifaceted information structure that captures business requirements. ... It
covers several interlocking viewpoints, each of which highlights a particular
aspect of 'how we do business'". One of its most important characteristics is that
it should be built entirely from business terminology and remain completely
divorced from technology concerns.

Business rules are one essential element of a business model. There are some
other elements that usually essential, but the complete set of elements and
techniques is expected to vary from one organisation to another, and to be
precisely specified in the organisation's business architecture. The purpose of a
business architecture is to define the vocabulary and syntax – the conventions
and methods – of the organisation's business modelling. A particular business
model can be thought of as an 'instance' of the architecture. The sample
business architecture described by Morgan includes the following elements4:

Figure 1:
A sample busi-
ness architecture
(adapted from
Morgan)

Narrative

Business
Process
Element

Role Actor Business
Intention

Organis.
Unit

Business
Object

Business
Rule

Business
Event

 plays holds

 performs in

described in

 participant in

underlies

achieved by applied
through

impacts defines

constrains

constrains
acts on

 responsible for

describes

One of things meant by "richly structured" is that all the elements of such a
scheme are expected to have their own internal structuring: using, for example,
hierarchical decompositions, flow or sequence diagrams, UML-style modelling,
and so on, according to the organisation's methodological preferences.

4 'Element' is not always the best word, especially since it is reused at a different level in the term 'business process element'.

Where it seems clearer we will sometimes refer to sections rather than elements of the business model.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 8 of 35

D
 R

 A
 F

 T

'Business
objects' – or
fact model

What Morgan calls a business model coincides reasonably closely with the
second layer of the Zachman framework,5 after which it is presumably named.
Some elements of a Morganesque architecture can be correlated with Zachman
cells in this layer, though Morgan's conception is more detailed.

The architectural element called business object in Figure 1 corresponds with
the cell in Zachman's Data column known as the semantic model or fact model.
Following Morgan, we will use the terms 'fact model' and 'business objects' more
or less interchangeably, according to context. The attraction of the term
'business objects' is that it better conveys that the purpose of this section of the
business model is to define the real things or concepts that participate in or are
dealt with by the business, such as customers, orders, contracts, penalties,
inducements, and so on. This is the sense intended in the figure, where such
alternatives as 'business fact' or 'semantic object' do not obviously commend
themselves. In other contexts – for example, when describing the controlled
vocabulary necessary for the precise expression of business rules – the term
'fact model' better describes the methodological intent.

In current development practice the fact model is often simply a glossary. In
using the term 'business objects' Morgan indicates that it should be more than
this: his intent is to enrich the structure of the conventional glossary or fact
model with more rigorous definitional techniques – for example, by deploying a
notation such as UML in order to model classes, attributes, associations, and
state.

The notion of 'business objects' introduced here is not be confused with the
logical data model or physical data model at levels 3 and 4 of Zachman
respectively. These other artefacts will undoubtedly represent some of the same
objects, possibly using very similar techniques, but they do so at different levels
of detail, from different perspectives, and for different purposes.

Other
elements of
the business
model

Here we briefly survey other elements of Morgan's sample business model which
have a significant relationship with business rules. These are narratives,
business processes (or business process elements), and business intentions.

Narratives

"A business narrative is a description of a fragment of business life." The
most universally adopted kind of narrative is, though it takes a variety of
forms, the use case, and we will use this term more or less
interchangeably in subsequent discussion. What all narratives have in
common is that they describe the way the business is expected to operate
in a given situation. They do this by describing the interactions of an
agent with 'the system', and in doing so define the scope of the system:
"they describe a boundary around the system and interactions taking
place across that boundary".

Narratives deal with things and concepts in the business world, using the
vocabulary precisely defined in the fact model. They describe workflow –
i.e. elements of business process, – in the course of which they arrive at
critical points where business decisions are made, requiring the existence
of business rules. We discuss business decisions and business rules in
more detail later; here we merely note that narratives, or use cases, are
usually an important starting point for the discovery of business rules.

5 A brief explanation of the Zachman framework is given as an Appendix.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 9 of 35

D
 R

 A
 F

 T

Business processes and their elements

"A business process is a sequence of activities aimed at producing
something of value to the business." Typically a business process has at
least one clearly identifiable start and end point, has an objective or
purpose, is enacted over an interval of time that may be short or long,
often spans organisational units, and handles 'things' (physical objects or
information) that may be transformed or augmented and handed on.
Business processes can also be broken down into smaller elements,
which may participate in more than one process.

Morgan notes that business processes are neglected by some
methodologists (particularly proponents of UML) but describes two
techniques for structured breakdown that are in common use: hierarchical
decomposition, and flow diagrams. A typical hierarchical decomposition,
using Morgan's example of a bank loan application, is pictured below.
Whatever the modelling approach, it is necessary to identify and depict
the elementary business processes which make up the lowest useful level
of decomposition. Criteria for identifying these elementary units vary, but
one common guideline is "one person, one place, one time". It is the job
of use cases to specify the content of each elementary business process in
detail.

Figure 2: A sample
process
decomposition
(after Morgan)

SECURED
LOAN

Register
Application

Authorise
Funds

Complete
Agreement

Check
Application

Provide
Information

 Applicant
Status
Ch k

Security
Valuation

Business intentions

This section of the business model falls roughly in the Motivation or Why
column of the Zachman framework6. It describes business goals and
objectives and core business values. It is the "underpinning that should
enable us to answer questions about our system" like 'Why do we need to
include this feature?' or 'Why do we constrain values in this way?'. Morgan
suggests one possible structuring technique which involves the modelling
of layers of intentions, enablers, and risks.

There is a connection between intentions and with business rules which is
important when business rules are being formulated. Business intentions
provide the motivation for business rules, or, as Figure 1 sees it, business
rules are the means of applying the intentions. Morgan does not suggest
that it is necessary to model these connections explicitly, and we don't at
present see this as necessary to the rules development process.

6 At level 2, of course, since the whole of the business model we are discussing lies at this level. This Zachman cell is variously

described as a business plan or policy charter.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 10 of 35

D
 R

 A
 F

 T

Business
rules

Having made a brief survey of what else a business model contains, we arrive
finally at business rules. Business rules gravitate towards the end of business
model development, because they are logically dependent on most other
elements of the model. In Tony Morgan's words, the importance of rules in
relation to the rest of the business architecture is that they provide an excellent
means of encapsulating knowledge about the intentions of the business which
can then be applied to define and control other parts of the system. To be
developed effectively, "rules can't stand in isolation but need to be grounded in
a rich representation that captures the many facets of the business that are
needed to provide a balanced picture."

The high level purpose of business rules is to realise intentions of the business
which might be quite generally expressed, such as reducing risk (in the case of
loans or insurance policies, for example), managing customer relationships, or
controlling workflow and approval processes. The rules themselves can have
various types and purposes, such as:7

Purpose Examples

Entity relationships Relationships that must be enforced between business
entities (e.g. an Order must have exactly one
Customer), and specific conditions for these
(e.g. unless the Order is of type X, in which case...).

Supporting business decisions Recognising business scenarios and conditions,
allowing standardised, predictable, well-managed
decisions to be made.

Computation For example, premiums, interest rates, finance
allocations, workflow steps, approval status, etc.

Validation and notification Checks on correctness of values, descriptions of
incorrect states, notification of automatic corrections
made, etc.

Rules, then, represent constraints that define conditions that the business
requires to exist, or calculations that must be applied in particular business
contexts. Morgan emphasises:

"Business rules are not descriptions of a process or processing. ... They define
what must be the case rather than how it comes to be."

While Morgan is here referring to processing in its most general sense, this is a
correct description of the relationship between rules and process in the business
model. Use cases describe business process, by narrating how exactly how the
business is carried out. Business process elements also describe business
process, by analysing and decomposing its structure and tasks. Use cases
describe process elements, and rules are applied in the context of use cases to
impose conditions and specify calculations.8

Lastly, there is the question of what is the appropriate form for business rules to
take in the context of the kind of business model we would like to construct. In
keeping with our general principle of verifiability, business rule statements must
be available in a form that the business owner can immediately accept as valid
or reject as invalid. Morgan's view is that normal business language is entirely
adequate for expressing business rules (it has managed quite well for centuries
so far), and that the form shown to the business owner can be the original form
rather than a re-presentation of it: "esoteric notations, technical languages, and
so on, are not essential." There must of course also be an alternative form of
the rules "better suited for automation". Morgan is driven here by a lack of tools

7 Adapted from [Morgan 2002], section 3.1.2.
8 The term 'process' is a fairly rich source of confusion. The execution order of rules, discussed later on page 20, is sometimes

called their 'processing order', but this turns out to be a detail of implementation beneath the notice of the business model.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 11 of 35

D
 R

 A
 F

 T

to compromise his own general principle, with the awkward proposal that
normal language is the primary form of the rules from which the automation-
oriented form is somehow generated. As is evident from what we said earlier,
IDIOM is now at hand to rescue Morgan's original agenda, which is preferable.
With IDIOM the primary representation of rules is a fully and precisely modelled
(but far from esoteric) graphical representation, and the automatically
generated near-natural language is a secondary representation (the other being
the generated rules component). The mechanics of this approach are described
in more detail in the next part of this paper.

Business
decisions

The concept that IDIOM contributes to rules modelling is the business decision.
As defined in the IDIOM lexicon, a business decision determines the action to be
taken in a particular 'business situation'. It represents a point in the business
process where we need to say exactly how the organisation – through its
information system, if this is an automated decision – will behave, in response
to the particular circumstances. The details of this behaviour are spelt out by
business rules. In a use case for a bank loan application, for example, the
typical business decision to be made is 'Should this loan application be accepted,
and if so at what rate and with what conditions?'. Or in a medical insurance
claim: 'What items in this claim should be paid, at what level, or with what
explanation if rejected?'.

Business decisions in this sense do not immediately seem to require us to add a
new section to Morgan's business architecture, because they are already present
in a slightly different form. Looking at the example process decomposition in
Figure 2, it's clear that business decisions coincide with Morgan's elementary
units of business process. 'Applicant status check' and 'Security valuation', for
example, are pieces of process whose purpose is to arrive at a business
decision. The underlying business decision is the goal of the business process
element, and it is noticeable that the business process element usually takes its
name from the decision it makes.

Business decisions, then, more or less coincide with a concept already present in
the business model. However, as we integrate IDIOM into the development
process, we will find that they have a useful role to play in defining how
business rules are invoked. Briefly stated, a use case describes a piece of
process whose purpose is, usually, to make a business decision. Making the
decision consists of applying of a particular group of business rules in the
particular context of the use case. The business decision plays an important
definitional role: it describes the purpose of applying the rules, which rules
should be applied, and the facts (or data, assembled by the use case) on which
they operate.

These relationships are reflected in Figure 1, if we regard a business decision as
being roughly synonymous with a Business Process Element. A use case
'describes', or provides context for, the decision; business rules constrain the
decision; and business intentions are realised by the decision.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 12 of 35

D
 R

 A
 F

 T

Developing business rules – activities and artefacts
In the previous section we have described business rules as one of the essential
elements of a business model which accurately and completely captures the
business requirements. It is now reasonable to ask, what kind of development
process is needed to develop such a model? What are the development
activities, in what sequence are they undertaken, and what are their products?

It is outside the scope of this paper (and Morgan's book) to describe the entire
development process. The different elements contained in Morgan's business
model all merit separate discussion of the benefits which they individually bring
to the development process, but our purpose here is to focus on business rules.
We will outline the overall development process sufficiently to explain where
business decisions and business rules fit it, and then trace the specific thread of
rules development in more detail. The emphasis is on IDIOM's contribution to
rules development.

One conclusion from this discussion will be that a focus on business rules,
particularly with support from a tool like IDIOM, can be introduced to an existing
development process with minimal upheaval. It should not be necessary to
completely re-engineer the development process in order to introduce and
benefit from a more rules-centric approach.

The 'typical'
development
process

Every organisation evolves its own development process. As a basis for
discussion we'll assume that this process typically proceeds through the
activities of analysis, design, and implementation. These can succeed each other
either iteratively (the spiral model) or sequentially (the waterfall model), but
that is not an issue with any significant bearing on our discussion.

The business model that we have discussed so far describes pure business
requirements and is a product of the activity we'll call 'analysis' for brevity, but
which is understood to include the capture, analysis, and notation of
requirements. This activity is carried out by the business owners and business
analysts. As we have said earlier, this activity and its results fit roughly within
the second layer of the Zachman framework.

Design activity produces such artefacts as the logical and physical models
described in the third and fourth Zachman layers, and implementation activity,
which is largely programming, produces the technological artefacts of the fifth
layer.

As a general rule, the Zachman layers describe phases of development of a
piece or component of the system that must occur in proper sequence. Iterative
life cycles obey this rule too: they work by completing sections of the system at
each pass. Within a Zachman layer, it is common, even inevitable, for the
constituents elements of major work products to be developed in parallel.

Working on
the business
model

Morgan says nothing about the order in which he expects the various sections of
a business model (apart from business rules) to be produced. The implication is
that this is not something that can be usefully specified in advance, or is
perhaps too obvious to need mentioning. At the risk of stating the obvious, we'll
state what we regard as typical steps leading up to the development of the
business model.

First, before the development process proper can begin, there is some kind of
project inception phase whose purpose is to make a preliminary determination
of scope and to plan the development activities. A functional breakdown of the
system is usually the only sensible basis for this, meaning that an initial analysis
of the business process elements is produced, leading to a list of principal use
cases which can be used as a framework for planning.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 13 of 35

D
 R

 A
 F

 T

After this development process gets under way, beginning with requirements
capture through interviews and other forms of information gathering. The
information collected is recorded, after analysis, in the individual model sections
for actors, roles, organisational units, intentions, and so on, as well as the use
cases themselves. The sections are typically developed piecemeal and in
parallel, according to the order in which facts are discovered and need to be
written down. There is nonetheless a logical order, or a set of logical
dependencies, that must be observed by finished sections before they can be
regarded as complete and well-formed. In the sample business architecture
illustrated in Figure 1, for example, actors, roles, and business process elements
are prerequisites for use cases, and use cases and a fact model are prerequisites
for business rules.9

Where do
business
rules fit in?

The development process we are picturing is a progressive elaboration of the
various sections of the business model in an order driven both by the logical
relationships between them and the fortuitous order in which facts are
discovered. The project planners need to organise the work, and a common
planning basis is to tackle the use cases in prioritised order. Use cases tend to
be the backbone of the plan because, as we mentioned earlier, they are a
vehicle through which the detailed scope of the system is discovered, and this
has repercussions throughout the business model and for the project as a whole.

Through this process there is a thread concerned with business rules which we
trace in the following sections. In the first two of these we focus on business
decisions, which are discovered in individual use cases, and imply sets of rules.
After that, we look at the logically separate and subsequent development of the
rules themselves.

Locating and
recording the
business
decisions

In our business model, the job of use cases is to describe (one or more)
elementary pieces of business process, and each elementary business process
revolves around the making of one or more specific business decisions. The job
of a business decision is to realise some particular intentions of the business by
orchestrating the application of a set of business rules to data assembled in the
use case.

What this means in practical terms is that as a use case is developed the
business decision (or decisions) that it makes are identified. A common pattern
is that the first part of use case is concerned with assembling the data needed
by the decision (through various interactions of actors and the system), and the
second part executes the decision, using the collected data as input and
receiving as the result of the decision some significant business output (such as
a price or status or instruction, or a combination of these). The analytical task
here is to identify the name and purpose of the decision, and as far as possible
the pieces of data that are involved as inputs and outputs.

Given that this step is embedded in development of a use case, the first priority
is to properly understand the operation of the business and the nature of the
business decisions involved. It can be a distraction at this stage to attempt to
capture the underlying details of the decisions, which are the business rules. It
is usually recommended, particularly when the rules are significantly complex,
to plan for a separate rules discovery process at a later stage: Tony Morgan's
case study for rules discovery10 is a case in point. Good reasons for this
approach are that business rules may require different business specialists from
those that contributed the body of the use cases, and that rules can turn out to
be shared by a number of use cases, in which case it is obviously better to have

9 Note that the arrows in Figure 1 run in the direction of the verbs with which they are labelled. The direction of the prerequisite

relationship may or may not be the same as the arrow, depending on the meaning of the verb. The intention of the verbs is to
suggest rich relationships between the model elements, in which prerequisite-ness or dependency would be just one
constituent (and not necessarily in every case).

10 [Morgan 2002], section 4.4.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 14 of 35

D
 R

 A
 F

 T

found these various use cases before attempting to formulate their rules.

The decision
inventory

Business decisions, as we discussed earlier on page 11, in virtue of their role as
the genesis and superstructure of business rules, have a claim to being regarded
as a business model section in their own right. Particularly when IDIOM is used,
business decisions are significant analytical entities which provide a framework
for rules development and are traceable throughout all subsequent phases of
the development process. We will call the artefact in which they are described
the decision inventory.

The purpose of the decision inventory is to provide a place, outside of the use
cases, to collect information about decisions which directly supports
development of the business rules. Initially, when a decision is first identified,
this is likely to include the decision's name, a brief description of the decision's
business purpose and effect, the name of the use case making the decision, and
a list of the data values that, from analysis of the use case, appear to be
required as input and expected as output. Inputs and outputs, in particular, are
expected to be incomplete at this stage, pending full discovery later during the
rules development process. Information given for each value is likely to include
a name or definition, probably authorised by the fact model, plus data type,
constraints, etc.

Other facts about the decisions could be recorded: for example, references to
business intentions, similarities between decisions (implying shared rules),
references to government regulations that rules must implement, and any
advance information about rules' implementation that happens to come up in
interviews and needs to be captured somewhere. The intent is not to copy any
information in the use case, but to organise the information in the way that best
supports rules development. The use cases will probably not be completely
supplanted as source material for rules development, nor is this a goal.

The decision inventory is an artefact intended to support rules development but
not to contain the final expression of the developed rules (for that a specially
designed tool such as IDIOM is required). Learning from Tony Morgan, we
should ask what form it is likely to take: will a simple word-processing
document suffice, or should some elements of it – for example, the data content
of each decision, or the links between use cases and decisions and between
decisions and rules – be more precisely modelled? The answer depends on the
tool used for expressing the rules. If the tool is comprehensive enough, it will
model all these elements – in a rules repository, for example, – and the
inventory will revert to the status of a secondary source, no longer containing
any information that is vital for production of the information system and is not
modelled elsewhere.11

The steps for
rules develop-
ment

Business rules tend to be one of the last sections of the business model to be
developed because of their logical dependency on other sections. As we
mentioned earlier, use cases and the decision inventory are essential
prerequisites. The fact model is also a prerequisite – or co-requisite – of rules
development: the terms referred to in the rules must have a consistent and
well-defined interpretation, and it is the job of the fact model to provide this. As
also happens elsewhere in the development process, 'prerequisites' are not
necessarily definitively complete at the outset: we expect to correct and extend
them in the light of discoveries made during rules analysis.

There is a further reason why rules development should gravitate towards the
end of business model development. In many businesses, competitive
advantage comes from being able to change business rules quickly and easily
after the system has been put into production. The business demands not just a
business architecture in which rules are modelled effectively, but a system

11 IDIOM models most of the elements mentioned here. It models decision content (as schemas) and the linkages between

decisions and rules. It is not cognisant of use cases and does not enable decisions or rules to be traced back to use cases.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 15 of 35

D
 R

 A
 F

 T

architecture, tools, and general development approach that allow rule changes
originated by business owners to rapidly pass through the development steps
and (via code generation) into the running system. The result of such a
capability, demonstrated by IDIOM, is that not all rules development has to be
finished before design and build activities can proceed; it can be done in
parallel, with corresponding acceleration of the project schedule. As is shown
graphically later in Figure 10, we think of business rules development as
beginning towards the end of business model development, and continuing
thereafter through the remaining development steps and through the life of the
deployed system.

The development of business rules is a process with three steps: discovery,
definition, and testing. Tony Morgan has chapters on each which provide
excellent supporting material. In the following sections we review these steps
and describe how they are carried out under an IDIOM approach.

Rules
discovery

At a high level, the task of discovering business is not a lot different from the
way the rest of the requirements are captured. It involves collecting and
analysing information from various sources, including documents and business
people, and presenting the results in the form required by the business
architecture for input into the next step of the process. The details are, of
course, different, and it is not our purpose to describe them here. Tony Morgan
provides a comprehensive chapter on this subject, covering information sources,
indicators for rules, techniques for analysing documents, interactive sessions,
and workshop techniques. He includes a valuable case study dealing with a loan
approval example, on which the illustrations in this section are based.

Seen from an IDIOM perspective, rules discovery is the step which brings rules
analysis far enough for IDIOM to be able to take over the remaining work of
precisely defining and testing the rules. Our interest in the rules discovery step
is therefore mainly limited to describing its results. The goal of rule discovery is
to find and specify all rules that underlie each business decision identified in the
decision inventory. The results consist of a decent first attempt at the natural
language texts of all rules underlying the decision, plus a tabulation of the input
data on which the rules operate and the output data finally returned by the
decision. The data tabulation belongs in the decision inventory; it is a
completion of the rough list that was assembled during use case analysis. The
rule texts can be in whatever form it was convenient to produce during the
analysis process: they are a temporary and incomplete realisation that will soon
be converted into a precise and permanent form.

Typical rule texts might look something like the following:

Figure 3:
Sample rule texts
produced during
rules discovery

An applicant must be rejected if at
least one of the following is true:

The applicant is a stability risk
The applicant is a health risk

Job mobility is defined as (years in
present job) + (years in previous job)

A working applicant with job mobility
less than 3 must be considered a
stability risk

An applicant must be considered as
working if employment type is any one of:
public sector; private sector; military

A working applicant must be rejected if the
loan period is greater than the applicant's
working years.

An applicant must be considered to have
adequate funding if all the following are true:

Applicant is working
Applicant's funding ratio > 3

The concepts and objects, or facts, that the rule texts refer to are of two types.
Some, like the datum 'job mobility' are transient results produced by the rules
themselves, having definitional value to the business, but existing only briefly in

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 16 of 35

D
 R

 A
 F

 T

the operational information system. These may disappear when rules execution
is finished, or may be returned as part of the result of the decision for further
use in the business process. By contrast, other facts are part of the persistent
records of the business, likely to found in a database, for example. Rules refer
to these using the terminology and definitions established in the fact model, and
in later phases of system development we expect to appear in artefacts such as
the logical and physical data models. The terms 'applicant' and 'employment
type' above look as if they will turn out to have some persistent quality: an
Applicant is probably modelled in the fact model as part of hierarchy of Person
objects, possible with a close similarity to a Customer. (Temporary facts can
also be described in the fact model, if it’s desired to use the fact model as a
complete glossary of business terms; but if the rule is sufficiently specific and
particularly if the fact is not exported from rules execution, then a duplicate
definition in the fact model is likely to be more of a maintenance overhead than
a help.)

The sample rules shown above are a few from a considerably larger set required
by the loan approval decision. The following tabulation is likewise only a sample
of some of the input and output data that the complete decision might be
expected to require:

Figure 4:
Sample input and
output data
required by the
rules belonging to
a decision

Integer
Single; married; divorced; widowed; other
Integer
Owner occupier; living with parents; tenant;

other
Integer
Integer
Good; poor; unknown
Heavy; light; non
Integer
Integer
Integer
Public sector; private sector; military;

homemaker; student; unemployed; other
Integer
Integer
Integer

Amount of loan approved
Loan interest rate
Approval status
Approval reason
Next processing step

Datum Possible Values

INPUT

OUTPUT

Present age in years
Marital status
Number of children
Residence type

Years at current address
Years at previous address
Health
Smoking habit
Average weekly income
Average hours worked per week
Average weekly outgoings
Employment type

Years in current job
Years in previous job
Amount of loan requested

Integer
Decimal
Approved; Rejected; Referred
String
Contract; Supervisor; Resubmit

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 17 of 35

D
 R

 A
 F

 T

Rules
definition

Rules definition is the task in which we convert the results of rule discovery into
a form that allows us to ensure:

 The rules are unambiguous, precise, and complete.

 The rules are correct, because they can be verified by the business owner
and fully tested.

 The rules can be converted by automated means into a component that can
be directly deployed into the built system, obviating the need for any further
human transformations of the rules.

 The entire rules development process is carried out by business people and
under the control of the business owner.

At the time Tony Morgan was writing his book this agenda was not achievable.
There was no rules language in existence that enabled all these criteria to be
met. Natural language is understandable by the business owner, but impossible
to make precise and error-free. The cautionary example below (Figure 5) shows
a natural-language attempt composed with a word-processor: because the tool
provides no intrinsic support for a precise expression of rules, much effort is
expended trying to work round this deficiency with manual formatting, and the
results are laborious without achieving the desired mathematical precision (see
clauses 1.d, 1.e.iv and 3.b, for example). On the other hand, various formal or
technical languages have been proposed, but these are rejected because none of
them are understandable by business people. Morgan's conclusion at the time
was that current technology was not adequate, and that achievement of the
above goals was a long-term objective for the future.

1. Define the Base Entitlement Percentage (BEP) for each
Beneficiary:

a. IF Widow or Widower
THEN 22%

b. IF Child with one parent or foster-parent(s)
THEN 11%

c. IF Orphan without foster-parent
THEN 18%

d. IF separated spouse
THEN the percentage of the yearly earnings that
the separated spouse receives as alimony. The
total delivered by this clause to all separated
spouses is limited to a maximum of 22%.

e. IF Other Relative (Father, Mother, Grandparent or
Sibling)
AND the total granted under (a), (b), and (c) is less
than 62%
THEN

i. Other Relatives Residue (ORR) =
62% – total granted under (a), (b), and (c)

ii. IF ORR > 22.5
THEN ORR = 22.5

iii. Percentage per Other Relative (POR)
= ORR / number of Other Relatives

iv. IF POR > (b) or (c)
THEN POR = maximum of (b) or (c)

2. Calculate the Final Entitlement Percentage (FEP) for
each Beneficiary (Bfy):

(BEP for this Bfy * 0.62) / Total of all BEPs for all
Bfys

3. Calculate the annual pension:
a. Annual pension = yearly earnings * FEP
b. For each deduction :

Remaining annual pension =
(1.00 – deduction) * remaining monthly pension.

Figure 5: Trying to express rules precisely with a word-processor is time-consuming and unsatisfactory

IDIOM achieves Tony Morgan's long-term objective. It supports the complete
rules definition process with an approach that satisfies all the above criteria. It
provides an intuitively clear graphical language for expressing rules precisely,
plus facilities for testing the rules fully, for converting them into near-natural
language for review, and for deploying them in the form of generated program
components.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 18 of 35

D
 R

 A
 F

 T

The IDIOM graphical formula language is the base technology on which these
features rest. Technically it is a functional programming language. Functional
programming languages – Microsoft Excel is a well-known example – are
recognised as well suited to non-technical users, because they allow potentially
complex expressions to be correctly constructed with simple means in an
environment that eliminate many common problems and errors that arise from
'real programming'. With IDIOM, there is no programming in the usual sense:
rules (or formulas) are assembled by selecting and dragging, which ensures that
most kinds of invalid expression simply cannot be constructed. Data types
cannot be wrongly combined, for example, and incomplete rules cannot be
deployed. Satisfying the grammar of the formula language automatically
ensures that rules have been completely and unambiguously expressed.

The rules definition process with IDIOM centres round a rules repository in
which analysts recapture the results of rule discovery – business decisions and
business rules – in precise and final form. The main elements of this activity are
briefly described under the next four sub-headings.

Describing the data content of business decisions

Business rules act on data. Before rules can be formulated some kind of
execution environment for them needs to be defined. Business decisions
serve this purpose. The complete set of input and output data for a
decision are organised into a formally defined data structure called a
schema. Once the schema has been created, rules belonging to the
decision have the complete vocabulary of facts on which they need to
operate.

Figure 6:
Schematic repre-
sentation of a
decision schema

LoanApplication
Personal

Age
MaritalStatus
NumberOfChildren
Health
SmokingHabit

Residential
TypeOfResidence
YearsAtCurrentAddress
YearsAtPreviousAddress

Funding
TypeOfEmployment
HoursWorkedPerWeek
WeeklyIncome
WeeklyExpenditure
YearsInCurrentJob
YearsInPreviousJob

Loan
Period
AmountRequested
ApprovalStatus
ApprovalReason
AmountApproved
InterestRate

NextProcessingStep

integer
string enumeration
integer
string enumeration
string enumeration

string enumeration
integer
integer

string enumeration
integer
integer
integer
integer
integer

integer
integer
string
string enumeration
integer
decimal
string enumeration

Input
Output

IDIOM schemas are developed in their primary form externally to the
rules repository as XML schemas12, and then copied into the rules
repository for rules development. This is because they have a wider role
in the system architecture: they specify the public interface of the rules

12 More precisely, text files whose contents conform to the syntax of the W3C XMLSchema specification.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 19 of 35

D
 R

 A
 F

 T

subsystem which other system modules must use to invoke the rules. In
their XML form the schemas are an artefact of design, not analysis, and
are produced by the system's designers or architects, who are technical
specialists. They represent a small part of system design that is done
early – i.e. in the last stages of requirement analysis – to support rules
development.13

Expressing rules as IDIOM formulas

Analysts express rules in IDIOM by recasting the natural-language
business rule drafts as formulas. Formulas are functions that operate on
inputs that are either data values from a schema, or the results of other
formulas, or values extracted from rule-defined tables. Formula builders
are free to factor the formulas in any way that seems appropriate: a
complex rule may be factored into several formulas, particularly if some
of resulting pieces are reusable. The 'transient facts' that we mentioned
earlier – significant intermediate results generated by rules for use by
other rules – are of course expressed as formulas intended for use by
other formulas.

Figure 7: Extract from an IDIOM formula (graphical view)

The work of recasting the draft rule texts into precise formulas naturally
exposes ambiguities and gaps that were not evident in the drafts.
Business experts and analysts work together to resolve these flaws and
bring the rules them to a final correct form. Corrections may of course
have repercussions for other work-products: use cases, decision
inventory, fact model, and schemas can all potentially be involved.

13 The sequence of artefacts and activities in the entire development process is summarised in Figure 10 and discussed in more

detail in the Appendix on the Zachman framework.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 20 of 35

D
 R

 A
 F

 T

Rule execution order

A business decision specifies, in addition to input and output data, a group
of business rules. Business rules are declarative in nature. This means (as
should be evident from the examples in Figure 3) that they independently
declare desired states of affairs. The business requirement is just that all
the rules in the decision be correctly and consistently applied: no order of
execution is specified. True, there are dependencies between rules where
one rule establishes a fact used by another: but this does not mean
temporal ordering; it simply says more about what "correct and
consistent" means.14

At execution time, some order or other must occur. In rules systems that
use various kinds of inference engine, the order of rule execution may not
be readily predictable and may not be under the control of rules
developers. With IDIOM (whose rules execution engine is not an inference
engine), an appropriate order of execution is specified during rules
development, and always applied at execution time. Deterministic rules
execution is essential to IDIOM's approach for rules development by
business users. It allows complex rules sets to be built by simple means,
and is particularly important in enabling rules authors to develop and
debug their own tests.

Figure 8: In IDIOM, hierarchical groupings can be created to help organise rule sets. The leaf level shapes
(blue icons) stand for the individual rules, arranged in execution order (top to bottom).

Rule execution order is specified in IDIOM using the graphical tool
illustrated in Figure 8. Rules in the decision are arranged in a hierarchical
structure created out of linked groups. Square shapes with green icons
are groups, and rounded shapes with blue icons represent rules (or, to be

14 Material relevant to this section occurs in [Morgan 2002], section 5.5.2 and figure 5-6.

Job mobility is defined as
(years in present job) +
(years in previous job)

A working applicant with
job mobility less than 3
must be considered a
stability risk

An applicant considered
a stability risk must be
rejected

Sample
underlying rules

Atomic decision

Decision group

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 21 of 35

D
 R

 A
 F

 T

precise, root-level rules, which in general lead to the execution of other
dependent rules). The figure shows a possible way (one of many) of
organising the 30-odd rules in Morgan's loan application case study (a few
of which were quoted in Figure 3).

The hierarchical organisation is multi-purpose. The desired rule execution
order is a straightforward traversal of the leaf nodes (shapes with blue
icons, in top-to-bottom order). The remaining nodes (green icons) specify
no rules themselves, but form groups containing rules and other groups:
they allow labelling and classification of rules for management purposes,
and they are used as control structures during execution.15

Technically, the kind of specification being done here is procedural
programming, conducted by simple graphical means. The IDIOM rules
developer transforms declarative anarchy at the requirements level into
an precise structure in which rules execute in predictable and correct
order. Interdependencies between rules, for example, must be taken into
account, perhaps by letting each rule simply call its dependants whenever
necessary, or perhaps by strategies for generating and storing
intermediate results in the appropriate order.

Lastly, it is worth re-emphasising that because rules are declarative, the
rule execution order we specify with IDIOM is a implementation
contrivance (with definite practical advantages) and not a reflection of
business requirements. With its hierarchical representation it is
sometimes mistaken for a 'process decomposition', but in fact it has no
significance at a business level and nothing to do with the sections of the
business model that analyse 'business process'.

Further explanation of Figure 8

The figure illustrates the IDIOM scope pane. A scope corresponds roughly to a
business decision. In IDIOM terminology the shapes with green icons are called
decision groups and the shapes with blue icons are called decisions. In IDIOM a
'decision' is an atomic element in what this paper calls a business decision: it
corresponds to one value computed by rules for return to the business process. For
example, the last four atomic decisions in the figure compute the AmountApproved,
InterestRate, ApprovalReason, and NextProcessingStep output fields shown in
Figure 6. Multiple atomic decisions may be associated with the same output value:
in the large Verification group in the top part of the diagram, all atomic decisions
are concerned with calculated the ApprovalStatus: whether the loan is approved,
rejected, or referred.

Broadly speaking, each atomic decision is a place where a rule (in IDIOM, a
formula) is executed which returns the output value associated with the decision.
The rule may call other supporting rules. The figure illustrates this for one case: the
atomic decision 'Assess job mobility' executes a series of rules that calculate and
assess the transient fact called 'job mobility'. The figure illustrates this with three of
the sample rule texts that appeared in Figure 3; in reality more rules than this are
involved, and in IDIOM they are expressed precisely using formulas.

Testing and verifying formulas

Testing is an integral part of developing rules. In the IDIOM testing
approach, described in more detail in the next section, testing of the rules
to be done at the same time and by the same people as develop the rules.
This goals of this approach are to produce correct rules more quickly and
cheaply, first by removing reliance on programmers, and secondly by
ensuring that only properly tested rules are released to developers of
other system components and to the domain experts and business owners

15 For example, formulas can trigger abort or exit operations which prevent one or more current groups from completing

execution. In Figure 8, for example, it's intended that at any time any rule encounters a condition that requires the loan to be
rejected, the all active groups up to and including the Verification group are terminated. Execution would then continue with
the Loan Approval group (presumably setting zero values) and the Workflow group (setting values appropriate for Rejection).

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 22 of 35

D
 R

 A
 F

 T

who review them.

Domain experts and business owners need to review business rules in
normal business language or something close to it. For this purpose,
IDIOM converts business rules expressed as IDIOM formulas into near-
natural language. The sample shown below in Figure 9 is an excerpt from
the rendering of one formula (a heading section including contextual
details and comment has been omitted).

Figure 9:
Example of IDIOM
formula converted
into near-natural
language

Rules testing A fundamental principle of the IDIOM approach to business rules development is
we make information systems more effective and flexible when business rules
are independently modelled and, through code generation, can be rapidly
deployed or replaced in the running system. For this to be achieved, the
development, testing, and release of rules must be part of an integrated
approach entirely under the control of business people.

Tony Morgan16 classifies testing as one of three kinds of quality assurance, along
with walkthroughs and inspections. This implicitly makes the same point: that
testing must be closely integrated into the rules development process, alongside
other kinds of review. Reviewing tools available in 2002, and finding none
suitable, Morgan correctly observes: "The ideal tool [is] one that's designed
specifically for rule-set testing."

In the absence of a properly focused tool, it is hard for business people to do
effective testing without reliance on programmers. Such a reliance has

16 [Morgan 2002], chapter 5.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 23 of 35

D
 R

 A
 F

 T

disadvantages of time, expense, and accuracy. Programming a custom tool is
many times slower and costlier than reusing a good existing one. That being the
case, a common alternative is that a business analyst (the rule author) first
defines a suitable set of test cases that exercise all the rules, and then
programmers are responsible for testing the rules in the testing environment.
This has not only the disadvantages of time and expense incurred by increased
programming. It is time-consuming for the business analyst to specify the tests
in sufficient detail for the programmers to implement them accurately and
understand what the correct results might be. The process by which the
programmers convert the test specifications into executable form introduces
opportunities for error. And programmers are less able than the analyst to
improve or correct the tests as they are being developed and executed. In short,
the division of labour introduces an unproductive impedance.

An integrated approach to testing removes the impedance by allowing the rule
author to develop and run complete tests as part of rule development. With
IDIOM, the rule author, as rules are completed is able to immediately create and
run tests that exercise the rules, using an integrated test tool. Each test is
simple to create: it takes the form of an XML file conforming to the decision's
schema, and containing sample input data for one decision. The author runs the
tests as often as required, interleaved with any necessary corrections to the
rules. The results are viewed after each test as a parallel view of the input and
output states of the decision data; in the latter, output fields are expected to be
filled with the rules' outputs. If the result is good it can be saved for comparison
with future results from the same test. Tests can easily be restricted to
particular data fields or rules of interest: it is not necessary to always execute
all rules in the decision. Suites of tests with comprehensive coverage can be
quickly built up. The amount of XML syntax the rules author must understand is
trivial.

The greatest advantages of this approach arise from the fact that the same
person writes the rules and carries out the testing. When this is the case the
tester fully understands the logic being tested, is instantly able to spot errors
and correct them, and is able to implement additional tests when unexpected
bugs or results suggest them or gaps in coverage are noticed. The hands-on
approach achieves substantially better coverage and accuracy than the approach
of thinking out test cases and results for someone else to implement and
execute. It is, of course, also faster and cheaper because other workers or
departments do not have to be involved.

The IDIOM test tool emulates exactly what occurs in the executing information
system. It guarantees that the rule behaviour observed during testing will be
exactly reproduced in the running system. When the rule authors' test suites are
complete enough – and this should be verified under the organisation's quality
assurance procedures – the entire testing of business rules is confined to the
one place where it can be done most effectively, and there is only a minimal
need for further system testing when a new generated rules component is
released.

Incremental system testing is also readily supported. At any time the application
programmers are ready to test components that use business rules, completed
decisions in the rules repository can be converted into their generated form for
trial use.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 24 of 35

D
 R

 A
 F

 T

Summary of
the overall
development
process

The following diagram gives an rough overview of the development process we
have been discussing. The coloured rectangles represent artefacts that are
produced, and the columns the activities which produce them. The horizontal
axis represents time; first three columns describe the steps from analysis to
implementation of the system, and the rightmost column represents future
maintenance of the built system.

Figure 10: Rough
sequencing in
Morgan-IDIOM
development
process

Business Rules

Sys Model

Tech Model

Detailed Represent'ns

Org. Units

Intentions

Process Elements

Use Cases

Business Decisions

Fact Model

Roles

Actors

Events

time

de
pe

nd
en

cy

2

3 4 5

Business Model

Other Zachman levels

ANALYSE DESIGN BUILD MAINTAIN

 XML

The colour conventions used here are the same as in the diagrams of the
Zachman framework presented in the Appendix. The yellow rectangles represent
the various elements of our proposed business model; details of the Design and
Build artefacts (orange, green, mauve) are outside our scope and not spelt out.
The width of each rectangle suggests the span of time over the bulk of the
artefact's content is likely to be developed.

The vertical axis roughly indicates logical dependencies between artefacts:
boxes lower down are dependent on those higher up.

The business model artefacts depicted here (yellow) are based on the same
sample business architecture as was presented in Figure 1, with the following
IDIOM-related additions:

 The 'business decisions' box indicates the decision inventory. It has a similar
time-span to the use cases, because the two are developed together. The
orange box captioned 'XML' represents the step in which the decision
definitions in the inventory are formally expressed as XML schemas in order
to create an IDIOM rules repository.

 The 'business rules' box begins late in life of the business model, after use
cases and the decision inventory are well advanced. The bulk of the rules will
be built at this time, but IDIOM provides the freedom to continue adding and
changing rules for the remaining lifetime of the system.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 25 of 35

D
 R

 A
 F

 T

Impact of
introducing
business
rules

Any reader of this paper working with an already established development
process may be wondering what is involved in introducing the IDIOM-based
approach for business rules that we have been describing. In broadly answering
this question, we assume that use cases or narratives in some form are
produced under the existing process, but business rules are not explicitly
analysed or modelled.

The modelling side

It should be possible to begin modelling business rules with minimal
upheaval. The use cases should be the only existing requirements
artefacts which are impacted, assuming that these are in full enough form
for it to be possible, with some re-analysis of their content, to identify the
places where business decisions are made and the input and output data
for each decision. A decision inventory needs to be started, containing the
usual outline description of each decision. This may mean moving a small
amount of material from the use case into the inventory: for example,
descriptions of the decision's data elements, or anything that will
eventually become the contents of business rules. For use cases which
follow the common pattern of first assembling data for a decision, and
then executing the decision, the modifications should be easy to make
and well localised.

After that, the next step, which of course is not trivial, is to discover and
analyse the business rules and then define them in IDIOM in the manner
described in the earlier sections on rules discovery and definition. The
places where rules are discovered will vary according to whether an
existing system (or part of an existing system) is being redeveloped or
modified, or whether a wholly new system or module is being developed.
Rules may be found in existing source code, or in existing requirements
documents, or may need to be discovered afresh from interviews and
business documentation. In all cases, rule discovery produces, as usual,
rules drafted in normal language, an updated (or new) fact model, and
descriptions (in the decision inventory) of rules' input and output data. In
the following stage of rules definition, also as usual, rule drafts are
expressed as IDIOM formulas, tested, and verified by business owners.
These activities are carried out by business analysts and other business
people, with brief involvement from a technologist at the start of rules
definition, when business decisions are formally described as XML
schemas in order to announce the proposed public interface of the rules
subsystem. After these activities are finished the rules are ready for
deployment as a generated component.

The technology side

On the technology side, considerably less effort is needed than on the
analysis side. IDIOM is explicitly designed to make minimal technical
demands: it generates code in standard languages in a form that can
easily be called by application components, and does not require any
changes to the technology of the database or other system components.
To use the business rules, program modules make calls on the IDIOM
decision service. Each such call represents the execution of a particular
business decision identified in the decision inventory. In new code with
good traceability back to the use cases, this should be a considerable
simplification: instead of containing explicitly coded business rules, the
application has a small amount of code which creates the data structure
required by the decision, fills this with all required input data, sends it to
the decision service. The results of rules execution are returned by the
service in the structure's output fields. Calls on the decision service
always follow this same simple pattern.

There are obviously implications for existing program modules that

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 26 of 35

D
 R

 A
 F

 T

contain coded rules which are being moved to IDIOM. In these, the coded
rules need to be found and excised, and the modules brought into
conformity with the protocol just described. This ease with which this can
be done depends on traceability from the code back to the use cases: it is
straightforward if individual business decisions are well localised in the
code.

Programming work can usefully begin as soon as business analysts have
published one or more of the XML schemas which describe the business
decisions. Provided the analysts can undertake not to change these too
frequently during rules definition, programming and rules definition can
proceed in parallel. At agreed checkpoints, analysts can provide
programmers with a new release of the generated rules component: this
could be, for example, whenever a new business decision is available or
an existing one is significantly changed.

The two sides compared

We have just outlined the two major conceptual steps of the business
rules development process with IDIOM. The second step is entirely
concerned with using the product of the first step to generate the rules
component of the system. This step involves relatively little human effort,
and disproportionately large benefits.

The first step contains the bulk of the human effort connected with
business rules. It begins with an analytical effort which we call 'rules
discovery', and then continues with the IDIOM supported activities of
precise definition, testing, and owner verification of the rules. The result is
a rigorous, complete, and accurate model of the rules that is a valuable
artefact in its own right, not currently achievable with other tools. Even if
the technology step were never completed or the rules were programmed
by hand, this would remain the best way to model rules requirements.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 27 of 35

D
 R

 A
 F

 T

Rules development with IDIOM – some practical considerations
This section discusses some practical details of the IDIOM rules development
process that are peripheral to the theme of IDIOM's role business modelling. The
material here will be of most benefit to readers who have seen or used IDIOM,
or are embarking on a detailed evaluation.

The IDIOM
application
architecture;
location and
types of rules

IDIOM presupposes an application architecture in which business rules are
incorporated into the built system in the form of a generated component which,
seen from the perspective of other system components needing to invoke the
rules, is the provider of a decision service. Units of interaction with this service
technically known as decision requests, each of which corresponds to a business
decision described in the business model.

Business decisions and decision requests

Business decisions are the backbone of the IDIOM architecture, traceable
at all levels, from the business model down through the logical and
physical models and the implemented programs. At the requirements
level, they comprise an independent section of the business model (the
decision inventory), where they describe the context in which a set of
business rules is executed for a particular purpose. At the logical level
they are manifest as XML schemas which describe the input and output
data associated with each decision and together serve as the generated
rule component's interface specification. At the physical and programming
levels, the schemas describe the decision requests which programs send
to the decision service, and are also the units of organisation and
execution of the rules inside the IDIOM decision engine which constitutes
the core of the decision service.

At the program level, the purpose of a decision request is to request
execution of the rules underlying a particular business decision and to
acquire the business results. The medium of exchange between the
program and the decision service is a data structure conforming to the
decision's schema; it comprises the input and output fields required by
the decision. The program fills the input fields and sends the request to
the service; the service executes the rules, which use the input data to
create results and store these in the output fields. At the conclusion of the
call, the program has an updated data structure in which it finds the
business results it requires.

Location of rules

The decision service may be local or remote – a wide range of technical
solutions are possible – but in the IDIOM architecture rules always belong
in application layer (Morgan's 'middle tier'). They do not belong in the
client layer, or in the data services tier.

Types of rules

Of the several types of business rules described on page 10, not all are
regarded as within IDIOM's scope. Rules concerned with entity
relationships are not appropriate for IDIOM because they usually belong
in the data services tier.

The others – those supporting business decisions, computation, and
validation – are handled by IDIOM and are the kinds we have had in mind
in describing the rules development process, with the proviso that two
kinds of validation need to be distinguished. Rule inputs in a decision
request are assumed to have undergone some previous validation: for
example, to ensure that correct data types are supplied, and values lie in

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 28 of 35

D
 R

 A
 F

 T

ranges regarded as sane at a business level. This kind of validation is not
handled with IDIOM. On the other hand, IDIOM is designed to handle the
kind of validation where incoming values are inspected according to rules
and are rejected or adjusted: for example, a policy start date is rejected
because it is not within 90 days of today. In such cases, decision requests
typically include output fields intended specifically for error messages and
warning notifications, since these are legitimate business results of rules
execution.

Designing
decision
requests

In the rules development process, there comes a point where rules discovery is
complete enough for the business analysts to want to start converting draft
business rules into a precise form in an IDIOM rules repository. In the IDIOM
approach, rules execute in the context of a business decision part of whose
specification is the list of facts – inputs and outputs – on which the rules
operate. These lists of facts need to be present in the repository before the
IDIOM rules can be created. As we have already seen, each list is at this stage
expressed as an XML schema, which is loaded into the repository, and also
published to designers and programmers as being the intended interface
supported by the rules subsystem.

Productivity vs. stability

Once a decision schema is made public, business analysts and
programmers can work in parallel on the details of the decision (i.e. the
individual rules) and the program modules using the decision,
respectively. This accelerates development provided the rules discovery
has been reasonably complete and the analysts do not subsequently need
to modify the schema numerous times. Where possible, analysts should
try to reduce this risk by including in the schema fields that seem
potentially useful in future.

What exactly does a schema describe?

In technical language, a schema is an abstract description of an object
that conforms to the schema. Any conforming object is an instance of the
schema. It may be real-world object, or an object in a business model, or
an object known only to programmers.

If a schema describes an object, it is reasonable to ask: what kind of
object, exactly, is this a description of? Take the sample schema shown in
Figure 6, for example: this schema describes an object whose
characteristics include number of children, weekly hours worked,
requested loan amount, and loan interest rate. What kind of object has all
these characteristics? Not the loan applicant, who has children and works,
but cannot be said to have an interest rate. Not the loan itself, which has
a requested amount and an interest rate, but no children.

There are two reasonable answers. A business analyst would say the
object represents a business decision: this is not a real-world object, but
it is a real-world concept. The schema lists the facts that the decision is
concerned with, and that its rules operate on. A designer or programmer
sees the schema as a description of a message sent to the decision
service: it is a purpose-built object containing the data accompanying a
specific request for rules execution, somewhat like a real-world
application form.

This may seem to be labouring the point, but it is important to be clear
that the schema does not describe a business object. The contents of the
object described by the schema are often assembled from attributes of
various business objects, because it is in the nature of significant business
decisions to represent the confluence of several different business objects
for a specific business purpose. But in principle, the schema describes a
decision concerning business objects, and not one or more business

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 29 of 35

D
 R

 A
 F

 T

objects per se. This is perhaps clearer when one considers the lifetime of
the object described by the schema. Business objects are typically
persistent objects of business record; they have a substantial lifetime.
Decision request objects are transitory: they are never stored in a
database, and indeed, live only for the brief span of time in which they
are built, sent, returned, mined for results, and then discarded.

Factoring, reusing and adapting schemas

Considering a range of decisions made by a business – for example,
house, car and personal loans – one can easily imagine that a series of
decision schemas could arise with a section in common (for example, the
applicant's family, health or employment circumstances) to which the
same or similar rules applied in all cases. In such cases IDIOM supports
decomposition of the schemas into pieces, some of which are intended to
be shared by multiple decisions. As a result, each individual decision
participating in the sharing is described by several schemas, either shared
or unshared. Rules are always anchored to a particular schema; the real
goal of shared schemas is to avoid having to code the same or similar
rules in more than one place. A decision's rule set is the union of the rules
associated with each of the schemas it uses. For further flexibility, IDIOM
provides ways for the rules anchored to a shared schema to be subject to
variations in the context of different decisions.

When schemas are subdivided in this way, some of the partial schemas
that are created may seem to resemble the business objects with which
the decision is concerned. For example, a schema piece containing all
personal details of the applicant could be seem to be much the same thing
as the Person or LoanApplicant business object present in the running
application or its database. Further, some organisations already have XML
schemas describing their business objects, often adopted from accepted
standards for data exchange among businesses. This leads, naturally
enough, to an inclination to substitute combinations of pre-existing
business object schemas for the original 'pure' decision schemas derived
from a careful rules analysis process.

Reusing business object schemas in this way has advantages and
disadvantages. An advantage, particularly when reusing industry standard
schemas for data exchange, is that all fields that might be needed in
future are probably already included, so there is a promise of future
stability in the schemas even during business change. But by the same
token, these standard schemas are large and generalised, and inevitably
include many fields that are never needed, adding clutter to the rules
repository.

On the whole, reusing business object schemas is well justified if it also
enables common rules to be shared among multiple decisions. If it is done
not to share rules but to accommodate requirements arising outside the
realm of rules, then it brings no benefit to the development of the rules
themselves and may compromise the rules model. Whenever the schemas
finally used are not those derived from pure rules analysis, it is a sensible
precaution to ensure that the decision inventory documents both, by
preserving its focus on the true business requirements and describing
pragmatic deviations from these with annotations.

A related point is that business analysts and schema designers should aim
to ensure that schemas present as faithful a representation of the
business requirements as possible. That is, it is important to resist
requests to 'pollute' schemas to accommodate technical limitations or
special conventions of lower layers of the architecture. The schemas have
an important role to play in publicising an accurate expression of business
requirements for reference by all layers of the architecture. It is valuable
to the organisation if it is known that schemas accurately track

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 30 of 35

D
 R

 A
 F

 T

requirements, and that a change to a schema can only mean that the
requirements have changed.

Developing
rules as
IDIOM
formulas

Rules development in IDIOM can begin as soon as one business decision,
together with its data requirements and rules, has been adequately specified by
analysts and its corresponding XML schema has been produced by the
designers. The IDIOM repository administrator, who is typically someone with
some technical experience, loads the schema into the repository and defines
some minimal infrastructure for rules development (e.g. users and workgroups).
The repository is now ready for business analysts to begin capturing the
decision's rules as IDIOM formulas.

There are two parts to this. Given their essentially declarative nature, the rules
can at first be translated into formulas, using the graphical tool illustrated in
Figure 7, without much regard for the hierarchical organisation of the complete
rule set that will eventually be specified with the tool illustrated in Figure 8.
Logically, the formulas come first, and ordering and classifying them is
secondary. There are, however, practical reasons why the hierarchical
organisation normally needs to be developed simultaneously with the formulas.
First, when the rule set is large, organisation is an essential aid to thinking.
Second, a formula can't be tested until an atomic decision has been created to
invoke it, because the test tool works by executing either all or selected atomic
decisions and/or decision groups in the scope17. Thirdly, some decision groups
are essential to flow control: for example, they can define units of procedure
than can be aborted or exited, and can control iteration over repeated elements
in the schema.

17 As mentioned in the note on page 21, a scope corresponds roughly to a business decision. The tool shown in Figure 8 is the

scope pane, and 'scope' is the term usually used to refer briefly to the complete set of all atomic decisions and decision
groups specified in a scope pane.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 31 of 35

D
 R

 A
 F

 T

Conclusion
We have outlined the approach to software development recommended by Tony
Morgan, in which the key to improvements in the way we develop software lies
in better capture and modelling of business requirements. Morgan's
recommendations for more rigorous techniques in creating structured business
models are the ideal platform from which we make another advance:
recognising that business rules are a vital component of business requirements
and incorporating them as a first-class element of the structured business
model. This is a philosophy with which IDIOM is completely aligned, and takes a
step further. Business rules are not just a primary element of the business
model: they lead an important life of their own throughout the development
process and the subsequent life of the system. IDIOM promotes an approach to
rules development which is controlled by business people through development
and production, with the aim of both streamlining the rules development
process, and producing an information system that provides more accurate and
flexible support for the business's essential goals.

In the development process, we have described how IDIOM now provides the
tool support that Morgan, writing in 2002, hoped for. In particular, IDIOM allows
analysts to model business rules in a precise an accurate graphical formula
language which can be converted mechanically into the two essential forms:
near-natural language for sign-off by business owners, and a generated rules
component for the implemented system. We divide the rules development
process into two stages, the first of which we call 'rules discovery'. This is an
analysis task as conventionally understood, in which IDIOM, which is not an
analysis tool, does not take part. Use of IDIOM begins when discovered rules are
ready to be converted from natural language into a more precise and accurate
form; this is the step we call 'rules definition'. IDIOM provides complete
management of the rules from this point on: for definition, testing, and
deployment. Under IDIOM, an integral part of rules definition is complete testing
of the rules by rules authors: this approach is quicker and more effective than
testing involving programmers, and makes it possible to guarantee that the
generated rules component delivered to the system builders is complete and
accurate, requiring minimal re-testing.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 32 of 35

D
 R

 A
 F

 T

Appendix – the Zachman framework

Fact
Model

Business
Process
Model

Business
Logistics
System

Work Flow
Model

Master
Schedule

Business
Plan

List of
Things

List of
Processes

List of
Locations

List of
Organiza-

tions

List of
Events/
Cycles

List of
Goals/

Strategies

Logical
Data

Model

Application
Architecture

Distributed
System

Architecture

Human
Interface

Architecture

Processing
Structure

Business
Rule Model

Physical
Data

Model

System
Design

Technology
Architecture

Presentation
Architecture

Control
Structure

Rule
Design

Data
Definition

Program Network
Architecture

Security
Architecture

Timing
Definition

Rule
Specification

DATA MOTIVATION
WHAT

SCOPE
(contextual)

FUNCTION NETWORK PEOPLE TIME
HOW WHERE WHO WHEN WHY

BUSINESS MODEL
(conceptual)

SYSTEM MODEL
(logical)

TECHNOLOGY
MODEL
(physical)

DETAILED
REPRESENTATIONS
(out-of-context)

FUNCTIONING
ENTERPRISE DATA FUNCTION NETWORK ORGANIZ ' N SCHEDULE STRATEGY

Planner

Subcontractor

Builder

Designer

Owner

Figure 11: Zachman's Enterprise Architecture Framework

Figure 11 is a simplified depiction of the Enterprise Development Framework
produced in 1987 by John Zachman18.

The rows of the framework represent different complementary views of the
system seen by the planner, business owner, designer, and so on. These views
are all equally valid and comprise artefacts suggested in the individual cells (it is
important to note that these are just examples: in the original diagram all cells
except those in the first row are qualified with "e.g."). The rows are also known
as levels, because their downward order is the order in which the views are
typically developed during the growth of the system, and in a crude sense
descending to the next row means adding another level of detail to the system.

The columns of the framework represent various aspects of the system that
need to be considered at each level. Every cell represents an aspect of the
system seen from a specific viewpoint.

The framework is intended as an aid to thinking and not as a list of components
that should be bolted together to create a system. It may not be necessary to
create exactly the thirty different artefacts implied in the first five rows:
depending on the tools and techniques used, cells may in practice be joined or
repartitioned. But it is important to consider every cell to avoid the risk that

18 [Zachman 1987]

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 33 of 35

D
 R

 A
 F

 T

some important facet of the system may be overlooked.

Business rules are a case in point. Under the approach to the development of
business rules described in this paper, we need to assign different artefacts to
the cells in the Motivation (Why) column, and not all cells in this column remain
equally important. This is discussed in the next section.

Reconciling
Zachman with
Morgan and
IDIOM

In the body of this paper we discussed an approach to system development
originated by Tony Morgan and extended by IDIOM. A guiding principle for
Morgan is that requirements should be captured with the aid of a richly
structured business model, one of whose advantages is that it promises in future
to provide a basis for the machine-generation of system components. Business
rules are an important focus of the discussion because, having first recognised
rules as an essential element of any business model, we can also demonstrate,
using IDIOM, that for rules at least Morgan's vision is already realisable. IDIOM
creates a model of business rules from which the rules component of the system
is directly generated. In this light, some questions about Zachman's original cell
designations arise:

 First, business rules are now a fully-fledged element of the business model,
something that Zachman seemed not to envisage when he labelled the
'Business plan' cell. A business rules model is now the dominating artefact in
this cell. The element of the business model that Morgan calls 'business
intentions' also belongs here, and includes the idea of a business plan.

 Second, when the artefacts of level 5 are completely machine-generated
from the business model at level 2, the question arises, what happens to
Zachman's levels 3 and 4? Are they bypassed, or vestigially present, or also
machine-generated?

These two questions converge in the Motivation column. With IDIOM, all the
principal artefacts at levels 2, 3, 4 and 5 of this column are IDIOM-produced or
IDIOM-related, as summarised in the following diagram:

Figure 12:
Reinterpretation of
Zachman under a
Morgan-IDIOM
approach

Business
Rule Model

Rule
Design

Rule
Specification

BUSINESS MODEL Business
Plan

DETAILED
REPRESENTATIONS

TECHNOLOGY
MODEL

LOGICAL MODEL Decision Request
Schemas (XML)

IDIOM Architecture
(decision service)

Rules in the form of
generated code

Business Intentions.
Business Decisions.

IDIOM formulas

Morgan-IDIOMMOTIVATION
WHY

Original Zachman

Level 2 (Business model)

Business Intentions refers to the business model element described by
Morgan. Business Decisions are an IDIOM-influenced clarification of
Morgan: as we explained in the body of the paper, they link use cases and
business intentions to business rules; they supply motivation and context.
A business decision has input and output data and executes a defined set

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 34 of 35

D
 R

 A
 F

 T

of rules; the rules use the input data to produce the output data (or, to
put it another way, a decision provides rules with their execution
environment).

In practice, the main physical artefact constructed at this level is an
IDIOM rules repository. It contains a rich representation of business
decisions and business rules, the latter expressed as IDIOM formulas
which can be displayed mechanically in various forms, including the
'logical English' form in which they are reviewed by business owners.
Business decisions are expressed by IDIOM in two parts: groupings of
formulas which specify rule execution order, and schemas which describe
a decision's input and output data and therefore the data environment
available to the formulas. The schema component of the decisions is
actually consists of the 'decision request schemas' belonging to level 3,
which are developed by a designer, loaded into the repository, and
thereafter presented by IDIOM to business modellers in an appropriately
simplified form.

Level 3 (Logical model)

IDIOM enforces an approach in which business rules are encapsulated as
an independent component of the application architecture, in order to
promote flexibility, maintainability, and sharing of rules between
applications. This approach becomes visible from level 3 downwards. At
level 3 we are aware that there is an interface over which other
components of the system call on the business rules component. We
picture this (anticipating level 4 perhaps) as a service which allows other
components to send requests for business rule execution; requests
correspond to the business decisions identified at level 2. The interface is
specified in the form of XML decision request schemas, each of which
precisely describes the input and output data for a particular business
decision. The schema-based interface specification co-ordinates the
separate development of the rules repository and the program modules
that use the rules.

Zachman calls this cell a 'business rules model', but that term would seem
to better apply to level 2. We assign decision request schemas to level 3
because they are developed by a designer in advance of programming,
but they could arguably be assigned to level 4. There are no other
artefacts we can assign to this cell that are part of the specific information
system being built: parts of IDIOM's own design could perhaps be
claimed.

Level 4 (Technology model)

At this level, as at level 3, it is hard to identify relevant parts of the
specific information system being built. The technology model is largely
provided by IDIOM's own architecture for the decision service. System-
specific additions might include specifications for how exactly the decision
service is connected to the Data and Function aspects at this level, though
these would arguably seem more closely connected with Function than
Motivation.

Level 5 (Detailed representations)

This level is realised by IDIOM's code generation function. Business rules
are converted into a body of generated code which is integrated into the
built system by being installed in the IDIOM-supplied runtime module
which provides the decision service. The generated code is the principal
artefact at this level; again, it can be asked whether parts of IDIOM itself
qualify.

The IDIOM approach to business rules
and the development process

RESTRICTED

Copyright © 2004 Object Oriented Ltd Version 0.4 (March 2004) Page 35 of 35

D
 R

 A
 F

 T

References

Morgan 2002 Tony Morgan. Business Rules and Information Systems: Aligning IT with
Business Goals. Addison-Wesley, 2002

Bevington 2000 David Bevington. Technical note – Business function specification of
commercial applications. IBM Systems Journal, vol. 39, no. 2, May 2000.

http://www.research.ibm.com/journal/sj/392/bevington.html

Bevington 2004 David Bevington. ASL – A formal language for specifying a complete
logical system model (Zachman Row 3) including business rules.
Business Rules Journal vol. 5 no. 1, Jan. 2004.

http://www.BRCommunity.com/a2004/b167.html

Zachman 1987 J. A. Zachman. A framework for information systems architecture. IBM
Systems Journal, vol. 26, no. 3, 1987.

Framework diagram available at http://www.zifa.com

