
IDIOM

Web Services and IDIOM



Overview and Background

One of the key features of IDIOM is the flexibility enabled in 
the runtime deployment of the IDIOM decisions and formulas.  
IDIOM generates simple components that can be integrated into 
most common architectures.  This whitepaper seeks to explore 
options for the deployment of the IDIOM decisions and formulas 
as web services.  

Terminology

References are made in this document to the following IDIOM 
specific terms:

Scope, Decision and Decision Group. These concepts are 
clearly described in the White Paper `Introduction to IDIOM 
Global’. However, a brief outline is also provided below: 

A SCOPE is the specification of the set of documents required 
to execute a set of Decisions. The scope therefore implicitly 
identifies a set of decisions for a business domain, and is the 
only required specification parameter when invoking IDIOM.

DECISIONS are specific business defined outcomes that are 
captured within the documents that are identified by the scope. 
For instance, a decision may determine a status of “Approved” 
for an insurance policy; or, its price.

A DECISION GROUP is a set of decisions that collectively 
address a business problem. For example, validation may 
involve many decisions, in which case all of the ‘validation 
decisions’ can be addressed as a group.   

Why a web services deployment?

Web services offers another deployment option for IDIOM 
in addition to direct invocation and messaging. An 
implementation of a web service is provided with IDIOM 
(described in later sections) that packages the standard IDIOM 
execution interface as a web service. The remainder of this 
document will discuss this and other approaches to web 
service integration with IDIOM.  

Before dealing with the technical approaches to web service 
integration with IDIOM, it is worthwhile looking at factors that 
are likely to influence the decisions to package IDIOM as a web 
service.  

Internal Integration - typically an organisation finds that 
business rules are distributed across many systems and are 
implemented in many languages.  IDIOM offers organisations 
the ability to manage repositories of decisions and to remove 
the management and execution of decisions from a wide 
variety of systems.  IDIOM supports a runtime implementation 
for both Java and .NET,  however it is understood that there are 
many other languages supporting a wide variety of business 
decisions.  We see the encapsulation of IDIOM in a web service 
as an option to manage the execution of decisions in systems 
in which IDIOM does not have a supported runtime. This 
decoupling of decisions and the application via a web service 
allows IDIOM to be used in a much more diverse environment.

Externalisation of decisions and rules - the management 
and control of business rules independently to systems is not 
purely an internal problem.  Many organisations package and 
resell their products/services through intermediaries; these 
intermediaries often implement their own systems to support 
the distribution of these services (e.g. banks may sell insurance 
products on behalf of the insurer and implement systems that 
manage the sales and distribution of these products). Once 
the core business decisions are implemented in IDIOM, the 
web services environment offers organisations the ability to 
offer a programmatic (non-GUI) interface (i.e. a web services 
interface) to partner organisations. This allows the business 
decisions to remain within an organisation but to be exposed 
to partners, facilitating existing relationships.

How to deploy IDIOM within a web 
service

IDIOM Standard Web Service Interface (wsdl)
The standard web service interface provided with IDIOM 
offers an alternative to the direct invocation of the decision 
server components (either via .NET or JAVA).  The interface 
described below provides a low-level interface to IDIOM and 
is appropriate for an internal deployment of IDIOM as a web 
service.  This web service provides a fine-grained RPC-style 
interface rather than a business-oriented interface and is 
intended to replace the direct call to IDIOM.  

This web service interface could be used if a requesting 
component was developed in a technology that cannot directly 
integrate with either of the two supported deployment platforms 
for IDIOM (for example a 4GL or COBOL). Alternatively, 

© Idiom Software Ltd                         Page 1 of 4



a message-oriented (e.g. MQ Series or JMS) or CORBA 
interface could be used. The decision on which integration 
method to use will depend on the available technology and on 
the desired quality attributes of the solution.

The web service interface to the IDIOM Decision Engine could 
also be used when multiple applications are using a single 
repository of IDIOM decisions and there is a desire to manage 
the runtime execution of these rules in a single component 
(hence, a web service). 

The web service packaged with IDIOM accepts  the configuration 
details for a given execution as regular message parameters. 
However, it makes no reference to the XML documents 
(business objects) to which the decisions will be applied. 
The XML documents should be added to the message as an 
attachment using the techniques described in the SOAP with 
attachments specification. In the current version of WSDL 
(version 1.2), there is no capacity to describe document 
attachments - there is therefore an expectation that the 
business objects will be passed as XML documents to the 
web service (this cannot be communicated formally with the 
current WSDL specification).

...
<types>
          <complexType name=”decision”/>
                 <sequence>
                 <element name=”first” type=”xsd:string”/>
                 <element name=”last” type=”xsd:string”/>
                 </sequence>
       </complexType>
</types>

<message name=”executionConfiguration”>
            <part name=”repositoryName” type=”xsd:string”/>
            <part name=”scopeName” type=”xsd:string”/>
            <part name=”decisions” type=”decisions”/>
            <part name=”effectiveDate” type=”xsd:string”/>
</message>

<operation name=”executeDecisions”>
   <input message=”executionConfiguration”/>
</operation>
...

Encapsulated IDIOM web service interface (WSDL) 
Another approach to interfacing with the IDIOM Decision 
Engine via a web service is to encapsulate the IDIOM Decision 
Engine within a customised web services facade. Several of 
the reasons for doing this are summarised in the list below.

q The internal structure of an IDIOM Decision Engine  
 does not need to be exposed.
q The internal and external representations of the  
 business objects need to be isolated from each other

q A business interface needs to be presented to the  
 requestor of the web service.
q Authentication or authorisation needs to be   
 undertaken prior to executing the IDIOM rules.
q The IDIOM Decision Engine manages a large number  
 of decisions, and these decisions need to be   
 presented via a more coarse-grained interface.

Example Scenario

An insurance company is using IDIOM to manage the rules 
and decisions related to one of its products.  It has defined a 
common set of business objects (expressed as XML schemas) 
and has defined rules relating to the product within IDIOM.  The 
rules/decisions that the insurance company has chosen to 
manage within IDIOM are categorised as follows

q Underwriting decisions (approval for new business)
q Rating decisions (determine basic pricing)
q Discount/Commission decisions (determines discounts  
 etc. based on the intermediary processing the business)
q Claim assessment (approve/decline a claim)

The insurance company has decided to provide two 
mechanisms to access these rules - a web application for 
customers to apply for insurance online, and a web service 
for insurance intermediaries (for instance, a broker within 
the sales channel) to implement system-system interfaces to 
access the decisions and rules.  The following section outlines 
two approaches to implementing the web service interface to 
allow the insurance intermediaries access to the rules managed 
by IDIOM.

Business Object Attachments

The example below illustrates a web service implementation 
for the aforementioned scenario. In this approach, the business 
objects are passed to the web service as attachments to the 
SOAP message (as with the standard web service provided 
with IDIOM). The details of the repository configuration 
have been hidden from the web service user and have been 
repackaged as business operations.  It is then the responsibility 
of the web service itself to manage the mapping between the 
operation and the repository configuration (i.e. the mapping 
between operations and scope, decision group, decisions etc).
This approach follows the discussion on document centric 
computing for web services on the W3C website : 
http://www.w3.org/TR/ws-desc-usecases/#document-centric-computing

© Idiom Software Ltd                         Page 2 of 4

http://www.w3.org/TR/ws-desc-usecases/#document-centric-computing


.....
<!-- execution date is provided to allow the historical assessment of insurance 
claims etc - >
<message name=”executionConfiguration”>
  <part name=”executionDate” type=”xsd:string”/>
  <part name=”brokerID” type=”xsd:string”/>
  <part name=”brokerAuthenticationToken” type=”xsd:string”/>
  <message>

<operation name=”underwriteProduct”>
   <input message=”executionConfiguration”/>
</operation>
<operation name=”rateAndPrice”>
   <input message=executionConfiguration”/>
</operation>
<operation name=”calculateCommissionAndDiscount”
   <input message=”executionConfiguration”/>
</operation>
<operation name=”assessClaim”>
   <input message=”executionConfiguration”/>
</operation>
..... 

Type safe messages

In the following example, the business objects themselves 
are passed through the web services interface within the 
messages (as opposed to the document approach above).  The 
business objects themselves have been defined within the 
DomainDef.wsdl file and will represent the same structure 
as the business objects required by IDIOM.  This coupling is 
achieved through having a single definition of the domain (an 
XML schema) that is used by both IDIOM and the web service 
interfaces.

One of the principles of IDIOM is that the business objects may 
have their state altered as a result of the execution of decisions; 
to reflect this, the input and output messages contain the 
business objects.

This approach, while being type safe and ensuring that the 
format of the message is exactly as IDIOM expects (through the 
use of a shared definition of the business objects), does require 
more work on behalf of the caller.  The nature of the business 
object definitions is that they are quite often large. This means 
that the web service interface (in particular the message) is 
likely to be complex and will require the caller to populate a 
SOAP message with a complex XML object.

......
<definitions targetNamespace=”http://www.example.com/insurance”
             xmlns:idm=”http://www.example.com/services/idiom”/>

<import namespace=”http://www.example.com/services/idiom”
        location=”http://www.example.com/services/domain/DomainDef.wdsl/>

<message name=”insuranceProductInputMessage”>
   <part name=”executionDate” type=”xsd:string”/>
   <part name=”broker” type=”idm:Broker”/>
   <part name=”customer” type=”idm:Customer”/>
   <part name=”risk” type=”idm:Risk”/>
   <part name=”premium” type=”idm:Premium/>
<message>

<message name=”insuranceProductOutputMessage”>
   <part name=”broker” type=”idm:Broker”/>
   <part name=”customer” type=”idm:Customer”/>
   <part name=”risk” type=”idm:Risk”/>
   <part name=”premium” type=”idm:Premium”/>
   <part name=”error” type=”idm:ExecutionErrorContainer”/>
<message>

<operation name=”underwriteProduct”>
   <input message=” insuranceProductInputMessage “/>
   <output message=” insuranceProductOutputMessage “/>
</operation>
<operation name=”rateAndPrice”>
   <input message=” insuranceProductInputMessage “/>
   <output message=” insuranceProductOutputMessage “/>
</operation>
      

Web Services Architecture
No matter which style of message is used when deploying 
IDIOM in a web service environment, it is recommended that the 
service be designed using a web services facade architecture. 
A block diagram providing a summary of this architecture is 
shown in Figure 1. The key components of the web services 
facade architecture are:

q SOAP interface – it provides a SOAP compliant interface 
to the underlying facade

q Web Services facade – this provides the coarse-grained, 
business-oriented interface that client applications 
interact with

q Object Assembler – responsible for transforming 
data from an external representation to the internal 
representation used by the Decision Suite.

q Session Manager – manages any inter-invocation state 
that may be required

q Orchestration Manager – responsible for managing the 
workflow and routing within the facade. Can use IDIOM 
decisions to manage the workflow

q IDIOM –  the IDIOM Decision Suite runtime component and 
generated decision code.

© Idiom Software Ltd                          Page 3 of 4



     

Conclusion
We have seen how IDIOM can be deployed in a web services 
environment in the following ways

q IDIOM standard web service

q Document-centric web service

q Type safe message based web service

The decision on which approach is best depends on the individual 
requirements of a particular environment. Each approach has 
advantages and disadvantages. Web service encapsulation of 
IDIOM is very easy; IDIOM was designed to operate in an XML 
centric environment and it is therefore well suited to the web 
services environment. Whether the business objects are passed 
as documents or in messages does not affect IDIOM itself as these 
business objects will be XML and will conform to the definition 
of the business object that IDIOM expects.

Target 

Application

SOAP Interface

Transport Protocol

SOAP Interface

Session 
Manager

Web Services 
Facade

Orchestration 
Manager

Object 
Assembler

Idiom Decision 
Engine

Decision 
ImplementationRouting 

Decisions

Figure 1  IDIOM in Web Services Facade architecture

© Idiom Software Ltd                         Page 4 of 4


