
Architecture for Agile
Provisioning of Financial
Products and Services

Build products and services and deploy them
as content in an appropriately architected
system
14 April 2014

© Idiom Software Ltd

 “Agility is a core competency”
“Companies must be flexible enough to customise their products [and services] for
customers who expect special treatment, but they must also provide that special
treatment from a common, standardized supply chain and business infrastructure”
**

 Agility and change
How quickly you can adapt to change = agility

How quickly you can drive change into the market = agility
Change arises from leadership – your own or someone else’s!

 Product/Service is the nexus of the Customer/Company relationship
Company offers benefits under defined conditions

Customer subscribes to benefits under agreed conditions

 Agility in provisioning Products and Services is now the enterprise
“front-line”

Agility

** http://www.pwc.com/us/en/operations-management/assets/agility_foundation_for_change.html

© Idiom Software Ltd

 “With a strategic combination of standardization and flexibility,
companies can more efficiently fulfil their promises to their customers”**

 Standardised processes – enabler, constraint, or both?
Standardised product definitions inhibit agility
Reusing standardised generic processes aids agility

 Processes can be standardised without compromising product agility
To help product agility, standardised processes must be 100% product or
service agnostic, requiring zero knowledge of the internal product structure
The Product or Service becomes CONTENT in a standardised system

 Benefits of “Product-As-Content”/“Service-As-Content”
Strategic Alignment: 100% alignment between business policies and systems

Agility: Rapid product and service innovation to meet new market conditions
New Options: Economic development of tailored products and services for finer grained,

niche markets, or limited issue customised “Partner Products/Services”

ROI: Reduce product/service development cost, time, and risk

Standardised Processes

** http://www.pwc.com/us/en/operations-management/assets/agility_foundation_for_change.html

Financial Products and
Services are Agile ‘Content’
in a Standardised System

Build a financial product or service ‘factory’
for agile product development in a
standardised framework

© Idiom Software Ltd

 Empower business owners
Enable independent “Product/Service” development by SME “Product Owners”

Products and Services are able to be modelled, built, tested, and deployed as
discrete content within existing systems

 Change in IT Focus
Deliver/maintain highly engineered capabilities for use by products and services
Operate and manage products/services as content in suitably architected
environment

 Separation of responsibility
Business defines + manages products/services within available system capabilities

IT provides capabilities to support product and service requirements

 Product or Service structure, details, and behaviour can be managed
using the IDIOM tools

Details and behavior are controlled by IDIOM Decision Models

IDIOM Forms and IDIOM Decision Models manage user interaction

IDIOM Workbench is used for product testing and simulation on a large scale

Overview

© Idiom Software Ltd

 “Product” and “Service” are broad terms implying a predefined
process that is initiated by a specific customer request (the
context) and closed by vendor acceptance and pricing

 Requests are recorded as complete instances of the Product or
Service and are managed within the Product/Service business
policy defined life-cycle

 Includes anything that can be sold, supplied, or allowed based on
context specific information including for example:

Insurance products (e.g. a policy)
Lending products (e.g. a loan)
Entitlements and program admissions (e.g. a benefit entitlement)
Claims (e.g. claiming and entitlement from an insurance policy)

 Insurance Products are generally used as examples in this document –
replace with ‘loan’ ‘benefit entitlement’ ‘claim’ etc. as appropriate to your
business. Please read Product as implying Product or Service throughout.

What is a Product or Service

© Idiom Software Ltd

 A set of business policies (rules) that define:
What is being offered by way of the product (benefits)

Conditions under which it will accept requests for the product (underwriting)

Associated costs and terms (rating)
Future life-cycle events, and their associated conditions, costs and terms (behaviour)

 Context data: a collection of factors that will be used by the rules to
determine the business policy outcomes as above

Assume the meta data format is the xml schema (xsd) (factor definitions)

Assume the actual data is an xsd compliant xml document (factor values)
Often 100s of factor definitions, many 1,000s of factor values per product instance

 Offer and acceptance imply pre and post processes for:
Data capture, validation, aggregation, enrichment, and transformation

Mappings to/from a range of internal and external systems

 Plus a set of interfaces to allow interaction with the external
environment to collect and maintain the factors

What does a Product look like

Product Development Life
Cycle - PDLC

A new, propitious “PDLC” for development
and deployment of Products under SME
control

© Idiom Software Ltd

Product Owners Use IDIOM Tools to Develop, Prove
and Implement Product Strategies

Departmental
Test Harness

Product Owners
Operational Environment

Product
Pre-Release

Simulation + What If +
Large-scale Test Environment

Portfolio Data

UAT, Regression, Production

“I” = IDIOM Decision Manager
“F” = IDIOM Forms
“W” = IDIOM Decision Manager Workbench

© Idiom Software Ltd

PDLC – develop new Products
 Product Owner/SMEs develop

Definition of Factors – by updating the Schema

All rules – by developing Decision Models

 . . . and test the Product’s underlying business policies
Use the Workbench for full scale product simulation and testing

Adjust and refine policies to ensure business objectives are met

 . . . before configuring Forms for End User interaction
Define forms and forms behaviour – by developing IDIOM Forms and UI
‘session’ Decision Models respectively

 Then test and release to standard deployment process
When complete, consistent, and correct, transfer to standard IT system
test and UAT processes

© Idiom Software Ltd

PDLC – also use Product Configurations

 Build schema, rules, forms to manage product
configurations (parameters)
Entire sub system for use by Product Owners

Product Owners explicitly build rules to respond to these configurations

 Product configuration ‘Forms’ are used to input and
manage product parameters
Used by Product Owners, effective dated, and stored as
‘ProductConfigXML’

 Execution of Product rules always accompanied by
Product Configuration document
Rules read ProductConfigXML document to access product parameters
at runtime

E.g. rates, calculation methods, boundary conditions, etc

© Idiom Software Ltd

Technology Implications

 Product authors and IT infrastructure align around common Schema
defined data structures
Provides the data ‘sand-pit’ for product development
The full scope of data must be instantiated whenever the rules run

 One common schema/set of schemas e.g. for insurance:
Common policy details, perils, risks, terms etc
Hierarchy of risk elements to cover increasingly specific risk data
Each shared schema element to be matched with shared rules for reuse

 Store complete XML document as part of core DB design for data
agility and complete auditability

 Use rules to dynamically map agile schema defined data to known
standard elements that then map to fixed database columns
Targets includes both external (incl 3rd party) and internal systems and
databases
Extract and process these elements with standard processes – they do not
change unless the target system changes

Solution Architecture -
Overview

Product as content, and the associated PDLC,
both assume the existence of a generic
application that is not ‘product aware’

© Idiom Software Ltd

 The ‘product’ will deploy as a self-contained ‘Product Engine’, which
conceptually sits inside a customer specific generic application

 The customer specific generic application:
Provides all generic (standardised) application capabilities
Requires no knowledge of the internal content of either the Product meta
data or context data in order to operate (except where the meta data or
context data is targeted directly for consumption by the application)
Connects events and their context data with the correct rules for processing
Directs the results of rules execution to all related systems to apply as
appropriate in order to align with the final state of the context data

 Given agreement to an appropriate set of interfaces, the ‘product
engine’ can be inserted into any application (including legacy), or
operated as a service from a cloud environment or similar

Key Assumptions

© Idiom Software Ltd

 A generic application to provide capabilities for:
Persistence

Invocation of rules

Invocation of forms, human interfaces (if applicable)
Internal function invocation

Integration with other systems and interfaces

Polling service to generate time driven events

 User session management (if applicable)
Authentication, authorisation

Role based access to generic functions plus ‘Product instance’ search+select

‘Product instance’ search+select results in product specific actions

 External events are recognised by ‘hard-coded’ application response
E.g. user selects product specific action; message arrives on queue; date/time
reached, etc

Application acquires context data and hands-off to the Product Engine for rules +/or
forms execution – without knowing anything about the product being processed

Features of the Customer Application (1)

© Idiom Software Ltd

 The Product Engine manages response in accordance with rules until
rules determine the transaction is complete (a new valid state is reached)

 Completion of rules processing includes creation of new context data for:
Internal control and workflow (eg automated bring-ups, warnings, action lists)

Database column values for insert into standard (fixed) database columns

All relevant external system mappings (eg financials, legacy, workflow)

 When the Product Engine returns the completed transaction ‘XML
context data’ to the application:

Database is updated: the context data is inserted as XML into one XML column; other
column values are extracted from the XML and inserted natively

Control data (bring-ups, warnings, action lists etc) are extracted and cleared and replaced
in the database for this entity

All external systems data is extracted and posted via respective integration components

 Result:
XML column holds current state of the product instance in 1 XML document
All internal and external systems are synchronised with this new state

Features of the Customer Application (2)

© Idiom Software Ltd

 Native user session management for:
Authentication, authorisation
Role based access to non-product specific functions incl product search/select
Product search and select

 User selects non specific product action
Application performs the action eg admin, activity lists, print queues, etc

 User selects “New” product instance
Hand-off to Product Engine for rules controlled instantiation

 User selects existing product instance
Present rules driven list of valid actions
Actions may be generic (print, send, etc) or product specific (change, renew,
cancel, etc)
All product specific actions are handed-off to the Product Engine

User Transactions - Summary

© Idiom Software Ltd

‘Product Engine’ Concept Overview

Synchronise external systems

Actions, alertsBring ups for future events:
renewals, cancellation,
instalments etc

Map to database column values

© Idiom Software Ltd

Rules Apply throughout the Transaction Cycle

© Idiom Software Ltd

Sample Pattern for Core Business Models

Same function, different approach

Control Model can dynamically
aggregate rules components to
service some risk types

© Idiom Software Ltd

Proforma ‘Product Factory’ Database Design

Blue: ProductInstanceXML
holds all context data for the
product instance; standard
known values are extracted on
‘Save’ to populate the other
column values

Yellow: all ROWS are generated by Decision Models

Green: ‘Product’ Definition Tables

Archetype holds source schemas
for ProductConfigXML and
ProductInstanceXML

Red: Pre-Configured Database Tables.
EntityType (see below) is a table name
in this database enabling generic use
of BringUps and Actions

ProductConfigXML holds
product parameters for
the product

Financial Entry is an example of data that is generated by Decision
Models specifically for a known external system (columns are
bespoke to that system)

© Idiom Software Ltd

Dynamically Add New Context Data (Factors)

With Schemas, Rules, and Forms
aligned as system ‘content’, new
factors can be introduced by business
owners ‘without coding’ by simply
updating the ProductConfigXSD and
the ProductInstanceXSD schemas

This feature can be used to
dynamically build user selected
options into new product instances
that are customised by the Product
Configurations

IDIOM Forms automatically
recognizes and displays
the new factors

IDIOM Tools - Introduction

IDIOM Decision Manager
IDIOM Forms
IDIOM Decision Manager Workbench (DMW)

© Idiom Software Ltd

 IDIOM Decision Manager is a tool for graphically modeling and
deploying business decisions - without programming!

 A tool for the policy maker, not the programmer

 IDIOM Decision Manager automates complex policy based decision-
making at the enterprise level, deployable as industrial strength stand-
alone components

 In day-to-day practice it is usually used by IDIOM trained analysts or
SMEs working interactively with Product Owners.

Together they model the business/policy domain in terms of both data and
decisions (see Decision Model slide:26) before moving on to define the
underlying ‘Formula’ logic that binds them together (slide:27)

 Deployment as software components is fully automated and ‘without
fingerprints’

IDIOM Decision Manager

© Idiom Software Ltd

(See next Slide)

 This example is a real model drawn from a City Council
implementation of policy that calculates financial contributions to be
paid by property developers

 The policy is decomposed using a ‘mind mapping’ approach until we
reach the atomic units that we call decisions (rounded boxes)

 This ‘decision model’ is demonstrably aligned and integrated with
the adjacent data model (left hand panel) - validating and
strengthening both

 The atomic ‘decisions’ provide an easy entry point for specification
of the underlying rule details via the Formulas

IDIOM Decision Manager (Example)

© Idiom Software Ltd

IDIOM Decision Manager (Decision Model)

Formula slide (next) calculates
this decision value . . .

. . . and the Decision puts the value here

© Idiom Software Ltd

IDIOM Decision Manager (Formula Palette)

© Idiom Software Ltd

 The underlying rules details are easily captured using a ‘Lego’ like
drag-and-drop development approach

‘More fun than playing golf’ according to the CEO of one of our largest
customers
There is no scripting or coding required to build these formulas

 The rules can be tested immediately within the IDIOM Decision
Manager palettes

 When finished, IDIOM Decision Manager generates computer source
code (C# or Java) with a single button click

Callable by any application at run-time using any of a wide variety of simple
interfaces and wrappers (in-line, dll, web service, queue service, many more)
Can also be published directly into the IDIOM Decision Manager Workbench

 At the same time it generates the model into business readable
documentation (PDF)

IDIOM Decision Manager (Formula Palette)

© Idiom Software Ltd

 IDIOM’s decision models do for policy decisions what data models do for
data – a powerful abstraction that makes the underlying complexity
visible and manageable

 The models allow internal data transformations and business rules to be
intermingled within a single transaction

Business rules acting alone are severely limited in their ability to fully implement
business policy – invariably, in-line data transformations are necessary to match the
terminology* used in the policy statements

 Decision models that incorporate both data and rules behaviour enable a
further critical capability that is unique to IDIOM Decision Manager – the
models can be fully tested using real-world test cases directly in the
builder palettes

No external technology or application support is required to empirically prove the
correctness, completeness, and consistency of the models

 The decision models are converted into a form of ‘logical English’ and/or
XML for complete transparency

In addition to the C# or Java program source code that fully automates the models!

IDIOM Decision Manager – Key Points

* Personalised terminology is an ‘idiom’; hence the name of our company and product

© Idiom Software Ltd

IDIOM Forms

© Idiom Software Ltd

IDIOM Decision Manager Workbench

© Idiom Software Ltd

 Routine testing for intended/unintended changes during development
Unintended consequences can be a major cost
Can run regression for every change, with expected outcomes masked
Run daily during development, plus comprehensive release testing

 Verify business policy changes
Execute new business policies (e.g. underwriting and rating, or claims) across
existing portfolio
Use further decision models to assess outcomes and verify that the changes
are beneficial and as planned

 Routine verifications and investigations
Develop models for portfolio investigation and reporting

 Full file pass to generate updates for new, low cost batch processes

 Production of masked test data from production sources

 Migration of data between unlike databases or versions thereof

Use IDIOM Decision Manager Workbench For:

Worked Example

Example Scenario: A Group Insurance
Scheme Distributed via a Superannuation
Fund to its Members

© Idiom Software Ltd

 Insurer provides basic insurance cover for all fund members
Say, basic death cover
Provided by auto processing existing member data in standard batch process

 Insurer offers an opt-in opportunity for members for more complex
products

Insurer offers up-sell based on existing member data
Say, death/disability/trauma for all family members
Member opts-in and provides additional details for immediate cover, or follow-
up referral if needed

 Opt-in for all Products using a single Form accessed via a ‘Member
Portal’

Portal may be Fund, Administrator, or 3rd Party
Form is defined by the Insurer
Form includes Insurer’s validation, underwriting, rating rules tailored for the
specific scheme/product instance

Scenario Outline

© Idiom Software Ltd

All of these capabilities are reusable across all schemes (2 slides)
 A single XML Schema defines policy data for all scheme products

Includes standard insured, policy, risk, cover and financial elements
Includes standard workflow elements – bring-ups, warnings, actions
Includes standard elements for updating Insurer’s back-end systems
Includes standard elements for updating Member Administration systems

 Standard mappings to/from industry systems (SQL <> XML)
In-bound member details are mapped to standard insurance elements
Insurance and workflow elements are mapped out to Insurer’s internal systems
Member updates are mapped back to Member Admin system (e.g. Acurity,
Sonata, Blue Door et al) IDIOM Mapper can be used for all mappings

 Standard business policy defined rules are built over the Schema
Insurance rules provide standard validation, underwriting, rating
Support rules generate financials, workflow, internal/external system elements
Session rules dynamically morph the Form for required behaviour

Assume Insurer has ‘Standard’ Capabilities (1)

© Idiom Software Ltd

 One umbrella Scheme management database for all Schemes
The single XML Document describing insurance policy data is stored extant
Workflow elements are extracted and put in tables for Insurer workflow
Scheme Fund details, deployment details, batch transfer details et al are
standard table data in this database for operational management of schemes

 Product Configuration
Product configuration document (per product) contains parameters for
validations, underwriting, rating (e.g. rates, allowable ages, calculation methods)
All decision models understand and use the product configuration document
Most versions of products, and many new products, can be created by simply
cloning and updating an instance of the Product Configuration document

 Two IDIOM Forms
One Form is to maintain the Product Configurations (Insurer use only)
One Form is to access all of the Policy details (Insurer, Fund, Members???)
The Policy Form morphs dynamically for individual scheme and user
combinations under the control of decision models

Assume Insurer has ‘Standard’ Capabilities (2)

© Idiom Software Ltd

 Can the new Scheme be simply configured via a Product Configuration
Yes: Clone, update, and set up Scheme operational data. Finish! (hours)

 NO: does it fit within the data available in the existing schema?
No: extend schema with new standard and/or scheme specific elements

 Continue: adjust rules for scheme
Minor variations simply added to existing decision models (hours)
Build specific decision models for more substantial variations (hours to days)
Adjust the ‘control model’ to include any new decision models (minutes)

 Update the existing Form
Only elements used by this scheme will appear in the Form – automatically
Provide new style-sheet if new styling required to align with Member Portal
If entirely new look+feel needed, clone and adjust Form or rebuild (days)

 Set up Scheme operational data. Finish!

Process: Negotiate + Configure a New Scheme

© Idiom Software Ltd

 Insurer testing using IDIOM Decision Manager Workbench
Fund uses Workbench to copy and mask member test data for Insurer
Insurer uses Workbench for full insurance life cycle testing of Batch processes
Insurer uses Workbench for full insurance life cycle testing of Forms processes

 Test deploy the Form to Insurer test harness to test visuals + behaviour

 Deploy batch process with correct mappings and decision models
Fund Administrator to run batch processes stand-alone, or embed in daily/monthly
process, or run via IDIOM Workbench
All rules now specific to the scheme but most simply reused
Extract and transfer generated elements back to Insurer (backend) and Member
Admin database by preferred method

 Deploy Form and link to external websites
Deploy Form in a frame within existing Portal and redirect back to insurer system
Or, generate and embed within the Member Portal (not connected to Insurer)

 System test and go live!

Test and Deploy

Summary

This architecture works – today there are
millions of on-risk insurance policies being
managed in the architecture as presented

© Idiom Software Ltd

Business Benefits
 100% alignment of strategic business policies and computer

systems
 Business fully controls business policy and product/service

development and deployment
 Much more efficient rules development; maximum rules

reuse once developed
 Local ‘simulation workbench’ for testing products/services

and their updates to assist product and business policy
development

 Product changes verified against existing portfolio before
release – no surprises

 And of course, maximum product agility in a standardised
framework as promised

Thank You

Mark Norton
mark.norton@idiomsoftware.com
+64 21 434669

mailto:Mark.norton@idiomsoftware.com

	Architecture for Agile Provisioning of Financial Products and Services
	Agility
	Standardised Processes
	Financial Products and Services are Agile ‘Content’ in a Standardised System
	Overview
	What is a Product or Service
	What does a Product look like
	Product Development Life Cycle - PDLC
	Product Owners Use IDIOM Tools to Develop, Prove and Implement Product Strategies
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Solution Architecture - Overview
	Key Assumptions
	Features of the Customer Application (1)
	Features of the Customer Application (2)
	User Transactions - Summary
	‘Product Engine’ Concept Overview
	Rules Apply throughout the Transaction Cycle
	Sample Pattern for Core Business Models
	Proforma ‘Product Factory’ Database Design
	Dynamically Add New Context Data (Factors)
	IDIOM Tools - Introduction
	IDIOM Decision Manager
	IDIOM Decision Manager (Example)
	IDIOM Decision Manager (Decision Model)
	IDIOM Decision Manager (Formula Palette)
	IDIOM Decision Manager (Formula Palette)
	IDIOM Decision Manager – Key Points
	IDIOM Forms
	IDIOM Decision Manager Workbench
	Use IDIOM Decision Manager Workbench For:
	Worked Example
	Scenario Outline
	Assume Insurer has ‘Standard’ Capabilities (1)
	Assume Insurer has ‘Standard’ Capabilities (2)
	Process: Negotiate + Configure a New Scheme
	Test and Deploy
	Summary
	Slide Number 40
	Thank You�

